Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?

Answer

企业做自己的小模型,可能会用到以下工具及背后的公司:

  1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。
  2. 部署、可扩展性和预训练(Deployment, Scalability, & Pre-Training)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。
  3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。
  4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。

此外,还有以下工具和相关公司:

  1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。

企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。

Content generated by AI large model, please carefully verify (powered by aily)

References

Generative AI的开发工具和基础设施的趋势

这张图描绘了Generative AI的开发工具和基础设施的趋势。它代表了在AI开发领域中,为满足不同需求,工具和基础设施正在逐渐模块化和专业化的趋势。图中的公司被分组到以下四个主要类别:1.Orchestration(编排):涉及到的公司(如DUST、FIAVIE、LangChain等)提供的工具帮助开发人员管理和协调各个部分和任务,以确保系统的流畅运行。2.Deployment,Scalability,& Pre-Training(部署,可扩展性和预训练):这个类别的公司(如UWA mosaicm、NMAREL、anyscale等)提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及在模型使用前进行预训练。3.Context & Embeddings(上下文和嵌入):这个类别的公司(如TRUDO,Llamalndex,BerriAI等)提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可以理解的形式。4.QA & Observability(质量保证和可观察性):这个类别的公司(如Pinecone,drant,Vald等)提供工具,以确保模型的表现,并能够监控模型的性能和状态。这些类别和公司的出现代表了人工智能技术的复杂化和专业化。随着技术的发展,更多专门针对不同AI开发阶段的工具和服务正在被开发和使用,这有助于提高开发效率和模型质量。

06 企业权益和招募

1.企业可以是1.1.具身智能的,1.2.3D眼镜,1.3.AI绘本,1.4.AI图书等1.5.学习机1.6.飞书的多维表格1.7.蚂蚁的智能体1.8.Coze的智能体等1.9.Zeabur等云平台?1.10.0编码平台1.11.大模型:通义,智谱,kimi,deepseek等1.12.编程辅助1.13.文生图,可灵,即梦等1.14.推荐咖啡,奶茶等AI调配?需要相应资质1.15.企业权益:1.学校大屏幕广告(1周?一个月?PA屏)2.开幕式露出3.摊位本身的宣传4.其他的露出4.1.直播等?5.工作坊场?有教室等,可能是500人中的部分人报名,深度参与其中,尽量不是卖东西,应用实操5.1.AI辅助编程,每个人做一个专属自己的一站式工作台,工具箱5.2.针对典型的教学教研过程,做一个尝试6.圆桌会论坛之类7.真实案例收集反馈等,让大模型厂家的诉求8.半透明的chatbot会话,有二维码引流等,一周都可以,或者按时间聊权益

问:图片生成 3d 建模工具

图片生成3D建模工具是指利用人工智能技术,通过分析图片内容并将其转换成3D模型的软件或服务。以下是一些可用的工具:1.Tripo AI:Tripo AI是VAST发布的在线3D建模平台,它能够利用文本或图像在几秒钟内生成高质量且可立即使用的3D模型。该平台基于一个数十亿参数级别的3D大模型,能够实现快速的2D到3D转换,并提供AI驱动的精准度和细节。2.Meshy:Meshy是一个功能全面的工具,它不仅支持文本生成3D,还支持图片生成3D以及AI材质生成。用户可以通过上传图片并描述需要的材质和风格,来生成高质量的3D模型。3.CSM AI:CSM(Common Sense Machines)支持从视频和图像创建3D模型。它的Real-time Sketch to 3D功能支持通过手绘草图实时设计3D形象,再转换为3D模型。4.Sudo AI:Sudo AI支持通过文本和图像生成3D模型,特别适用于游戏领域的模型生成。用户可以上传图片或输入文本提示词来生成3D模型。5.VoxCraft:由生数科技推出的免费3D模型生成工具,能够将图像或文本快速转换成3D模型,并提供了图像到3D、文本到3D和文本到纹理等多种功能。这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成3D模型,无需专业的3D建模技能。它们可以广泛应用于游戏开发、动画制作、3D打印、视觉艺术等领域。内容由AI大模型生成,请仔细甄别

Others are asking
我想要能代替我直播的数字人工具
以下是一些能代替您直播的数字人工具相关信息: 数字人类型和应用场景: 1. 二维/三维虚拟人:用于游戏、IP 品牌(柳夜熙)、内容创作等。 2. 真人形象数字人:用于直播卖货、营销/投流广告视频录制(Heygen)、语言学习(CallAnnie)等。 数字人的价值: 1. 代替人说话,提升表达效率和营销效率,例如真人做不到 24 小时直播,但数字人可以。 2. 创造真实世界无法完成的对话或交流。 数字人面临的问题: 1. 平台限制:目前数字人水平参差不齐,平台担心直播观感,有一定打压限制。比如抖音出台一些标准,而微信视频号容忍度更低,人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间,依赖大模型技术提升。 3. 需求限制:直播带货算个落地场景,但不刚。“懂得都懂”的刚需场景,国内搞不了。目前更多是体验新鲜感。 4. 伦理/法律限制:声音、影像版权等,比如换脸、数字永生等等。 数字人直播盈利方式: 1. 直接卖数字人工具软件。分实时驱动和非实时驱动两类,实时驱动在直播时能改音频话术,真人接管。市面价格在一年 4 6 万往上(标准零售价)。非实时一个月 600 元,效果很差,类似放视频的伪直播,市场价格混乱,靠发展代理割韭菜。 2. 提供数字人运营服务,按直播间成交额抽佣。 AI 直播卖货适用品类和场景: 1. 适用于不需要强展示的商品,如品牌食品饮料。如果服装就搞不了,过品快,衣服建模成本高。 2. 适用于虚拟商品,如门票、优惠券等。 3. 不适用于促销场景,这涉及主播话术、套路,调动直播间氛围能力等。 4. 电商直播分为达播跟店播,数字人直播跑下来效果最好的是店播,数据基本能保持跟真人一样(朋友公司数据)。 AI 直播的壁垒和未来市场格局: 1. 时间拉长,技术上没壁垒。但目前看仍有技术门槛,单纯靠开源算法拼的东西,实时性、可用性不高。比如更真实的对口型,更低的响应延迟等。 2. 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。因为它只是工具,迁移成本低。 3. 真正把客户服务好,能规模化扩张的公司更有价值。疯狂扩代理割韭菜,不考虑客户效果的公司,售后问题很麻烦。 4. 有资源、有业务的大平台下场,可能会带来降维打击,例如剪映马上要做,如果不仅提供数字人,还提供货品供应链、数据复盘分析等等,全环节打通会绑定商家,很难打。 虚拟主播的驱动方式: 目前,虚拟数字人从技术驱动方式上可以分为两类,一种是“中之人”驱动,另一种是由 AI 驱动。 “中之人”通过动作捕捉和面部捕捉技术,实现虚拟人与现实的交互。动作捕捉技术可以提供一套全身动捕硬件设备,售价约为 29000 元,另需缴纳 800 元的软件年度服务费。如果只需要捕捉面部表情,价格则约为 6000 元左右。总的来说,“中之人”是虚拟人物的“皮囊”,而“中之人”才是其真正的灵魂。 AI 驱动是通过 AI 技术实现虚拟人的创建、驱动和内容生成的综合技术,使其具备感知、表达等交互能力。AI 驱动的虚拟人能够智能地读取并解析外部输入信息,并根据解析结果做出决策,然后驱动人物模型生成相应的语音和动作,从而与用户进行互动。这种“一站式”技术让虚拟数字人具备更加自然、智能、人性化的交互能力。
2025-01-31
有没有完全免费的AI工具?
以下是一些完全免费的 AI 工具: 绘图方面: draw.io(现在称为 diagrams.net):免费的在线图表软件,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 的转换工具,可通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 会议内容转文字方面: 飞书妙记:飞书的办公套件之一。 通义听悟:阿里推出的 AI 会议转录工具。 讯飞听见:讯飞旗下智慧办公服务平台。 Otter AI:转录采访和会议纪要。 写代码或辅助编程方面: CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 需要注意的是,部分工具可能存在使用时间限制或功能限制,您可以根据自己的具体需求选择适合的工具。
2025-01-31
AI图片制作视频如何保持人脸一致性的工具
以下是一些关于在 AI 图片制作视频中保持人脸一致性的工具和方法: 1. U 传:在 U 传中,通过点击相应按钮参考角色、风格或图生图,可保持人物一致性。 2. PixVerse:其“角色(Character)”新功能能实现 AI 生成视频中的角色保持一致。用户只需单击“Character”功能,上传符合要求的真实人脸图像,点击创建自定义角色,训练一个新角色,然后可使用自定义角色生成视频,可在 AI 生成视频中轻松切换场景,同时保持同一角色身份。 3. Midjourney:在有了 Midjourney 的新功能 Cref 以后,可在一定程度上保持人物一致性。先跑一张主角的定妆照,然后在需要出现主角人物的地方,扔进去 Cref 以保持发型、人脸、衣服。但 Midjourney 对亚洲人脸的一致性效果,尤其是亚洲老人的一致性效果较差,且 Cref 在画面的审美和构图上有一定的破坏性,所以能不用则不用。 需要注意的是,目前对于场景一致性,基本上还没有任何有效的解决办法。
2025-01-31
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31
国内AI工具及相关网站有哪些?
以下是国内部分 AI 工具及相关网站: |排行|产品名|分类| |||| |15|墨刀 AI|设计工具| |16|无限画|图像生成| |17|autoDL 云服务租用|Agent| |18|百度 Chat|AI ChatBots| |19|360AI 搜索(没接 GA)|搜索| |20|AIbot ai 工具集|导航网站| |21|创客贴 AI|设计工具| |22|MasterGo|设计工具| |23|美图设计室|图像编辑| |24|魔搭社区阿里达摩院|AI 训练模型| |25|即时 AI 设计|设计工具| |26|Boardmix 博思 AI 白板|PPT| |27|百度飞桨 AI Studio|AI 学习| |28|字节扣子|| |29|提示工程指南|Prompts| |30|toolsdar|导航网站| |31|autoDL 云服务租用|| |32|AIbot ai 工具集|导航网站| |33|同花顺问财|金融| |34|魔搭社区阿里达摩院|AI 训练模型| |35|MasterGo|设计工具| |36|即时 AI 设计|设计工具| |37|百度 Chat|AI ChatBots| |38|创客贴 AI|设计工具| |39|即梦 AI(剪映)|其他视频生成| |40|可灵 AI|其他视频生成| |41|360 快剪辑|视频编辑| |42|Dify.ai|Agent| |43|Vast(算力)|| |44|提示工程指南|Prompts| |45|站酷海洛|资源| |46|toolsdar|导航网站| |47|百度飞桨 AI Studio|AI 学习| |48|Boardmix 博思 AI 白板|PPT| |49|讯飞听见|转录| |50|帆软战略|电商| |51|帆软数据|数据分析| |52|360 苏打办公|生产力| |53|标小智 LOGO 生成|图像生成| |54|edrawsoft|思维导图| |55|彩云|通用写作| |56|虎课网免费在线视频教程|AI 学习| |57|xmind|思维导图| |58|秘塔写作猫|通用写作| |59|Pixso AI|设计工具| |60|火山翻译|翻译| |61|aippt|PPT|
2025-01-30
有什么绘图AI工具
以下是一些常见的绘图 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,有拖放界面方便创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建多种视图。 6. draw.io(现在称为 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 对于绘制 CAD 图,有以下 AI 工具和插件: 1. CADtools 12:Adobe Illustrator 插件,添加绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,帮助创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据输入自动生成 3D 模型。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 绘制示意图的工具还有: 1. Creately:在线绘图和协作平台,利用 AI 简化图表创建,适合绘制流程图等。 2. Whimsical:专注于用户体验和快速绘图,适合创建线框图等。 3. Miro:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录平台。 3. 选择模板:利用模板库选择适合需求的模板。 4. 添加内容:添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:需要团队协作可邀请成员一起编辑,完成后导出并分享图表。
2025-01-30
AI如何运用到集装箱物流行业?
AI 在集装箱物流行业有以下应用方式: 1. 物流路线优化:利用 AI 分析各种数据,如货物数量、目的地、运输条件等,优化物流路线,降低运输成本。 2. 配送计划制定:通过 AI 制定更合理的配送计划,提高配送效率和准确性。 3. 集装箱管理:借助数据分析和机器学习技术,优化集装箱的分配和使用,提高利用率。 4. 预测需求:利用 AI 预测货物的需求,提前做好准备,减少库存和延误。 5. 风险评估:分析潜在的风险因素,如天气变化、交通拥堵等,提前制定应对策略。 例如,像丰巢快递柜管理系统利用 AI 和物联网技术管理柜子的使用情况,提高快递配送效率。未来,AI 在集装箱物流行业的应用还将不断拓展和深化。
2025-01-24
制作ai视频都需要用到哪些工具
制作 AI 视频通常需要用到以下工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 此外,制作 AI 视频还需要考虑故事的来源和剧本写作。故事来源可以是原创(如个人或周围人的经历、梦境、想象的故事等),也可以是改编(如经典 IP、名著、新闻、二创等)。剧本写作方面,虽然有一定门槛,但可以从自身或朋友的经历改编入手,多与他人讨论并不断实践总结。在生成视频画面时,可能需要大量抽卡来获取合适的画面。比如在科幻片、战争片、奇幻片等不同类型的视频中,通过不同的工具生成相应的画面。
2025-01-21
ai虚拟人物和真实视频融合需要用到哪些工具
AI 虚拟人物和真实视频融合可能会用到以下工具: 1. HeyGen:这是一个 AI 驱动的平台,能创建逼真的数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等。 2. Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 3. DID:提供 AI 拟真人视频产品服务和开发,只需上传人像照片和输入内容,平台的 AI 语音机器人会自动转换成语音并合成逼真的会开口说话的视频。 此外,还有 Pika、Pixverse、Runway、SVD 等工具。Pika 对奇幻感强的画面把控较好,但真实环境画面易糊,新的唇形同步功能需抽卡;Pixverse 在高清化方面有优势,对特定物体移动的画面友好,但生成视频有帧率问题;Runway 在真实影像质感方面表现最佳,但爱变色且光影不稳定;SVD 整体表现略差,仅在风景片测试中表现较好。在实际使用中,可根据不同工具对画面的处理能力进行组合使用。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会变化,使用时请遵守相关条款和政策,并注意版权和伦理责任。
2025-01-21
coze中的工作流该如何使用到bot中
以下是关于如何将 Coze 中的工作流使用到 Bot 中的相关内容: 首先,将工作流看作一个函数,其输入参数通常只有用户的提问(query),这是一个字符串。 在工作流中,会按以下步骤进行操作: 1. 设置输入参数。 2. 调用 Google 搜索插件搜索互联网上的信息,可通过设置 `num` 参数控制返回搜索结果的数量,一般设置为 7 以平衡响应速度和信息量。 3. 格式化搜索结果,利用“Code”组块插入 Python 代码,将 Google 搜索返回结果格式化成两个字符串,一个是相关信息拼接而成的字符串(retrieved_contexts),另一个是网页链接拼接而成的字符串。前者用于插入 LLM 的提示词,后者用于 Workflow 的最终输出结果。 4. 获取用户的语言偏好,使用“Variable”组块获取 Bot 内设置的变量值(如 user_language)。 对于创建 Bot 并封装工作流,步骤如下: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换 Bot 模式为“单 Agent(工作流模式)”,若只需每次输入英文文章时返回精读结果,可直接调用工作流。 4. 将配置好的工作流添加到 Bot 中。 5. 填写开场白引导用户使用。 6. 关闭开场白预置问题。 完成封装后,可在「预览与调试」区进行最终体验与调试。但需注意,外层 bot 可能存在一定未知 bug,同一段 USER_INPUT 在工作流编辑面板中试运行正常,但在外层 bot 运行时可能报错,原因可能是外层 bot 的并发不够稳定。
2025-01-20
AI应用到哪些行业了
人工智能(AI)已经广泛应用于众多行业,以下是一些主要的应用领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 识别和阻止欺诈行为,降低风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,帮助投资者决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据,推荐可能感兴趣的产品。 改善搜索结果,提供个性化购物体验。 根据市场需求动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高产品质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他应用场景: 教育领域,提供个性化学习体验。 农业方面,分析农田数据,提高农作物产量和质量。 娱乐行业,开发虚拟现实和增强现实体验。 能源领域,优化能源使用,提高能源效率。 需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。以上内容由 AI 大模型生成,请仔细甄别。
2025-01-18
将Agent集成应用到公司网站、网站客服
将 Agent 集成应用到公司网站、网站客服可以按照以下步骤进行: 1. 搭建示例网站 创建应用:点击打开函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY。其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。 智能体(Agent)的相关知识: 1. 智能体的应用: 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 2. 智能体的设计与实现: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 一些好的 Agent 构建平台包括: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-01-07
模型成本
以下是关于模型成本的相关信息: GPT3.5 系列: gpt3.5turbo:功能强大,针对聊天优化,成本仅为 textdavinci003 的 1/10,最大 Token 数 4096,训练数据截至 2021 年 9 月。 gpt3.5turbo0301:gpt3.5turbo 2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。 textdavinci003:能完成任何语言任务,支持在文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。 textdavinci002:与 textdavinci003 类似,使用监督微调训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。 codedavinci002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。 其他模型供应商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用,接口响应速度快,指令灵活性差些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本 0.05 元/千 tokens。 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用,指令灵活性丰富,接口调用入门流程长,密钥安全性高,调用成本 0.008 元/千 tokens,训练成本 0.03 元/千 tokens。 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本 0.005 0.015 元/千 tokens,输出成本 0.02 0.07 元/千 tokens。 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在 0.05 0.1 元/次。 Claude 3 系列: Opus:最智能,擅长处理复杂任务,输入成本 15 美元/百万 token,输出成本 75 美元/百万 token,上下文窗口 200K token(特定用途 1M token 可用,详情咨询),应用场景包括任务自动化、研发、策略分析等。 Sonnet:平衡,应用场景包括客户服务、内容审核、优化物流等,优势在于速度和成本效益。 此外,Claude 3 系列在设计上注重安全和可靠,持续改进减少模型偏见,提高公正性和中立性,被评定为 AI 安全等级 2(ASL2)。
2025-01-31
layer_xl_bg2ble.safetensors,layer_xl_transparent_conv.safetensors,vae_transparent_encoder.safetensors这一类是大模型,还是Lora?
layer_xl_bg2ble.safetensors、layer_xl_transparent_conv.safetensors、vae_transparent_encoder.safetensors 这类文件可能是大模型的一部分,也可能是 Lora 模型。 在 AI 模型中: 基础模型(英文名 Checkpoint)是生图必需的,任何生图操作必须要选定一个基础模型才能开始。 Lora 是低阶自适应模型,可以理解为基础模型的小插件,生图时可有可无,但在控制面部、材质、物品等细节方面有明显价值。 同时,VAE 是个编码器,功能类似于滤镜,可调整生图的饱和度。
2025-01-31
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
Claude大模型背后是什么公司
Claude 大模型背后的公司是 Anthropic。Claude 系列在前段时间推出了 Claude3.5Sonnet 等模型,并且在代码生成等方面表现出色。同时,Anthropic 公司的 Claude 还具有较大的上下文窗口等特点。
2025-01-17
AI创作背后的版权陷阱
AI 创作背后存在诸多版权陷阱: 1. AI 绘画的版权归属存在争议。有人认为其只是从现有素材库拼接和重塑内容,创意来自原始艺术家;也有人认为 prompt 体现了创意。在新法律法规出台前,使用 AI 制作的图版权可能为公版,难以保证著作权。为确保版权,应将机器生成内容作为原始素材,突出“人类创作”部分。 2. 在数字化时代,AI 技术发展对现有知识产权法律体系构成挑战。如广州互联网法院的一起判决,标志着我国在知识产权保护方面的司法实践迈出重要一步。AI 在内容生成方面,对版权法的挑战主要体现在输入端训练数据合法性和输出端生成内容的版权属性问题。 3. 律师建议,AI 直接生成的东西在中国及海外通常不受法律保护。因此需要对其进行后期修改,如土豆人 tudou_man 作品后期部分占 30%40%,使用正版软件并完成版权链。大众对 AIGC 作品存在抵触,如认为其盗图抢饭碗,初学者使用 AI 时往往不做处理,而专业创作者会尽力规避瑕疵,导致创作成本较高。
2024-11-03
请给我推荐一个适合非技术人员学习的提示词工程手册,但是我不希望提示词工程手册太实操导向,需要包括背后的原理和逻辑,而不是只像一个公式一样的教给我
以下为您推荐适合非技术人员学习的提示词工程手册: 1. 小七姐:Prompt 喂饭级系列教程 小白学习指南(二) 强调对框架的理解和运用,介绍了多种提示词框架,如情境,并提供了学习的三步走:懂原理、找需求、用框架。 2. 19. RAG 提示工程系列(一) 虽然网络上提示工程资料众多,但 RAG 任务中提示工程的资料相对较少。此系列将带领大家了解 RAG 架构的概念、组成、痛点及提示词工程在其中的应用,并指导实操案例,帮助编写调试符合企业生产级标准的提示词。 3. VIRTUAL Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照) 指出提示词工程是一门实证科学,需要不断测试和迭代,包括开发测试用例、构建初版提示词、进行用例测试、优化提示词和分享完善后的提示词,同时不要忘记测试边缘情况。
2024-08-15
sora背后的核心技术是啥
Sora 是一种基于扩散模型的视频生成模型,其核心技术是一个预训练的扩散变换器。扩散模型是一种生成式模型,通过学习输入数据的分布来生成新的数据。在 Sora 中,扩散模型被用来学习视频的分布,从而生成新的视频。 Sora 的核心技术源自 Diffusion Transformers(DiT),它结合了 VAE、ViT、DDPM 技术,优化了视频生成。具体来说,Sora 将原始输入视频压缩成一个时空潜在表示,然后从压缩视频中提取一系列时空潜在补丁,以封装短时间间隔内的视觉外观和运动动态。这些补丁类似于语言模型中的单词标记,为 Sora 提供了用于构建视频的详细视觉短语。Sora 的文本到视频生成是通过扩散变换器模型执行的。从一个充满视觉噪声的帧开始,模型迭代地去除噪声并根据提供的文本提示引入特定细节。本质上,生成的视频通过多步精炼过程出现,每一步都使视频更加符合期望的内容和质量。 总的来说,Sora 的核心技术是一个预训练的扩散变换器,它能够解析文本并理解复杂的用户指令,然后通过扩散模型生成视频。
2024-06-10
WaytoAGI 背后使用的知识库模型算法是哪家的
WaytoAGI 是基于 Aily 和云雀大模型开发的人工智能,其中: Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。 云雀是字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。
2024-05-28