Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想写一篇本科生论文,利用ai工具来帮我更好完善,需要用到那些常用指令

Answer

在本科生论文写作中,以下是一些常用的 AI 指令和相关工具:

  1. 内容生成和辅助写作:
    • 指令示例:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”
    • 工具:Grammarly ,通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量;Quillbot ,一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。
  2. 文献管理和搜索:
    • 工具:Zotero ,结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献;Semantic Scholar ,一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。
  3. 研究和数据分析:
    • 工具:Google Colab ,提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化;Knitro ,一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。
  4. 论文结构和格式:
    • 工具:LaTeX ,虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式;Overleaf ,一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。
  5. 研究伦理和抄袭检测:
    • 工具:Turnitin ,一个广泛使用的抄袭检测工具,帮助确保论文的原创性;Crossref Similarity Check ,通过与已发表作品的比较,检测潜在的抄袭问题。

需要注意的是,使用这些 AI 工具时,要结合自己的写作风格和需求,选择最合适的辅助工具,同时要确保使用方式符合学术道德和规范。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

继续上述例子,如果你可以向LLM寻求写作建议,那么也可以直接要求它¹帮你写论文。让我们看看,当你提供一些关于我的背景信息,并给出一些指令时会发生什么:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我6岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最“异国情调”的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是13岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”请参见图2的输出结果。¹请注意,我并不是在提倡这是这些工具的道德使用方式,但了解这种可能性的存在以及它已经被全世界的学生使用是很重要的。这超出了这个介绍性指南的范围,去讨论LLM或整个生成式AI引入的所有可能的伦理、法律或道德问题,但我认为至少在介绍性示例中提出这一点是很重要的。你可以用生成模型做某件事,并不意味着这是正确的事情!另一方面,如果你是接收方,你最好为你的组织准备好迎接各种AI生成的内容。幸运的是,对于像这个例子中概述的情况,已经有努力正在进行以检测AI生成的内容。

问:有没有论文写作的 AI 产品?

在论文写作领域,AI技术的应用正在迅速发展,提供了从文献搜索、内容生成、语言润色到数据分析等多方面的辅助。以下是一些论文写作中常用的AI工具和平台:1.文献管理和搜索:Zotero:结合AI技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。Semantic Scholar:一个由AI驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。2.内容生成和辅助写作:Grammarly:通过AI技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。Quillbot:一个基于AI的重写和摘要工具,可以帮助研究人员精简和优化论文内容。3.研究和数据分析:Google Colab:提供基于云的Jupyter笔记本环境,支持AI和机器学习研究,便于进行数据分析和可视化。Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。4.论文结构和格式:LaTeX:虽然不是纯粹的AI工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。Overleaf:一个在线LaTeX编辑器,提供丰富的模板库和协作功能,简化论文编写过程。5.研究伦理和抄袭检测:Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。这些工具可以帮助研究人员和写作者在写作过程中克服各种挑战,从提高语言质量到激发创意,再到引用文献和抄袭检测。使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。内容由AI大模型生成,请仔细甄别。

✨ 零门槛玩转AI改图!Gemini 2.0 Flash「说话就能PS」小白教程 ✨

下面是几个常见的场景,告诉你上传什么图、用什么指令,能得到啥效果。快来试试吧![heading3]改变物体颜色[content]场景:设计师或营销人员在设计产品包装、广告素材时,常常需要尝试多种颜色方案来找到最佳效果,但传统设计软件需要手动调整,操作繁琐且耗时。实用性:这个功能通过简单的自然语言指令,快速生成不同颜色版本。解决了手动调整的繁琐问题,用户能迅速预览多种方案,大幅节省时间和精力,提高设计效率。指令:"把XX变成XX色"[heading3]让角色换姿势⚡[content]场景:视频制作者或动画创作者需要调整同一个人物姿势、动作、情绪和表情,但若重新用AI生成图片,可能导致人物长相、服装或背景发生变化,破坏一致性,增加后期调整工作量。实用性:通过上传一张已有图片并描述新姿势,Gemini能在保持人物特征和场景一致的情况下调整姿势。解决了重新生成导致的不一致性问题,用户无需从头开始,就能快速获得符合需求的素材。指令:“让XX抬手”或“让XX微笑”等等需要调整的动作[heading3]给图片加点料🦄[content]场景:社交媒体用户或内容创作者希望制作有趣、吸睛的图片来提升关注度和互动率;或者你的图片里正好缺个你需要的元素主体,p图太麻烦,用某些AI工具生图又可能改变原图需要保留的内容。实用性:通过自然语言指令(如“给照片里的人加个独角兽角”),用户可以轻松在图片中添加趣味元素,让创作变得简单又高效。指令:"让XXX出现XXX"

Others are asking
有没有成熟的ai制作宣传海报的工作流
以下是一些成熟的 AI 制作宣传海报的工作流: 1. 确定需求场景:例如想在社交平台发布内容时,为了获得更多点赞,需要有吸引力的图片;网上图片质量差且易撞图,自己相册中的照片不合适等情况。 2. 大致流程: 主题与文案:确定海报主题,借助 ChatGPT 等文本类 AI 工具完成文案。 风格与布局:选择想要的风格意向,根据文案和风格灵活调整画面布局,背景不一定空白。 生成与筛选:使用无界 AI 输入关键词,生成并挑选满意的海报底图。 配文与排版:将上述素材进行合理排版,得到成品。排版可参考 AIGC 海报成果。 此外,还有一些相关案例: 1. 游戏 PV《追光者》:灵感来源于《艾尔登法环》、《黑神话悟空》等游戏开场片,加入佛教元素。结合 ChatGPT 进行故事框架创作,使用 MJ 绘图、SD 重绘,制作深度图以及视频、AI 抠图,Aive 尝试制作背景音乐,微软 AI 制作旁白。除撰写故事框架外,生图及后期配音约用 7 天完成。 2. Junie 首部 AI 长电影:在传统制作流程中融入 AI 工具,如在 Discord 平台创作,依据 Notion 里的制作安排和细分章节剧本推进。用到多种 AI 工具,包括 AI 图像生成(Stable Diffusion/Midjourney v5.2/DALL·E)、AI 动画(Pika/Runway/Deforum)、口型同步(DID)、AI 旁白(ElevenLabs)、剪辑(Premiere)、文字翻译(ChatGPT)等,也会结合 3D 技术、AE 以及实拍等传统手段。
2025-03-15
请帮我整理关于AI最新进展和应用的介绍内容
以下是关于 AI 最新进展和应用的介绍: 医疗领域: ChatGPT 和 Google Bard 等技术极大加速了医疗健康生物制药的研究。AI 在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。 提前三年诊断胰腺癌。 两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因。 帮助抗衰老,筛查超过 80 万种化合物发现高效药物候选物。 用于寻找阿尔兹海默症的治疗方法。 帮助早期诊断帕金森。 法律法规方面: AI 在许多领域已经取得重大进展和效率提升,如交通监控、银行账户欺诈检测、工业大规模安全关键实践等。 AI 具有巨大的潜力来改变社会和经济,可能产生与电力或互联网相当的影响。 大型语言模型等技术进步带来了变革性的发展机会。 基础通识课方面: 流式训练方式提升了训练速度和质量,基于 Transformer 模型进行流匹配优于扩大模型。 有多种 AI 生成工具,如能创作音乐的 so no 音频生成工具、创建个人 AI 智能体的豆包、生成播客的 Notebook LN。 端侧大模型能部署在手机端等设备,通过压缩解决存储和性能问题。 AI 工程平台对模型和应用有要求,如 define 平台,coach 平台有新版本模板和众多插件工具,还有工作流。 有魔搭社区等为大模型提供服务的平台。 预告了 AI 建站,需安装基础软件帮助文科生和无基础人员建站。
2025-03-15
AI可以解决什么问题
AI 可以解决以下几类问题: 1. 教育培训方面: 可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 能够与学生进行对话交流,知识的获取不再受时空限制。 提供定制化的学习计划和学习资源,实现因材施教,提高学习效率和成果。 作为数字陪伴,促进儿童成长,提高学习成绩。 2. 科学研究方面: 在不追踪整个可能性图的情况下,尝试找到为不同的可能状态或结果分配分数的方法,并仅追求分数最高的路径。 在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作,试图找出路径在中间的交汇处。 训练语言模型人工智能来生成代表路径的标记序列或证明。 此外,AI 还在不断发展和拓展其应用领域,为人们的生活和工作带来更多的便利和创新。
2025-03-15
ai算法该从哪里开始学习
学习 AI 算法可以从以下几个方面入手: 1. 神经网络和深度学习方面: 了解麦卡洛克皮兹模型,感知机的学习机制,如罗森布拉特受唐纳德·赫布基础性工作的启发想出的让人工神经元学习的办法,包括赫布法则。 熟悉感知机学习算法的具体步骤,如从随机权重和训练集开始,根据输出值与实例的差异调整权重,直到不再出错。 2. Python 与 AI 基础方面: 掌握 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其关系,以及 AI 的发展历程和重要里程碑。 巩固数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 学习算法和模型,包括监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 了解模型的评估和调优方法,如性能评估(包括交叉验证、精确度、召回率等)、模型调优(如使用网格搜索等技术优化模型参数)。 熟悉神经网络基础,如网络结构(包括前馈网络、卷积神经网络、循环神经网络)、激活函数(如 ReLU、Sigmoid、Tanh)。 3. 强化学习方面: 了解在人工智能发展中,利用新算法解决挑战性问题的思路,如在某些领域找到适合的模拟任务环境进行训练和学习,不依赖人类专家先验。 以 AlphaZero 为例,理解其模型公式,包括定义神经网络、网络权重、棋盘状态表示、网络输出等。
2025-03-15
知名的AI模型广场有哪些
以下是一些知名的 AI 模型广场: 1. Liblibai 模型广场: 首页展示了其他用户炼成的模型,收藏和运行数较多的模型在首页前排。 包含 Checkpoint(生图必需的基础模型)、lora(低阶自适应模型)、VAE(编码器)、CLIP 跳过层、Prompt 提示词、负向提示词 Negative Prompt 等多种模型和元素。 采样方法决定了让 AI 用何种算法生图。 2. 阿里云百炼模型广场: 涵盖文本生成、视觉理解、音频理解、语音合成、语音识别、图像生成和 Embedding 等多种技术的丰富 AI 模型。 语音识别模型可将音视频中的人类声音转换为文本,适用于会议记录、客户服务、媒体制作、市场研究及多样化的实时交互场景,如会议、课堂录音记录、客服电话分析、字幕生成、市场研究与数据分析等。切换到实时语音模型后,可用于会议、直播、客服、游戏、社交聊天、人机交互等场景。
2025-03-15
动画音效ai,用于生成视频中的特殊音效,比如呼吸声,爆炸声,脚步声等等
以下是关于动画音效 AI 用于生成视频中特殊音效(如呼吸声、爆炸声、脚步声等)的相关信息: 1. 11Labs AI 音效:可以在一段提示语中放入不同画面的描述音效来生成一整个视频音效,但目前可用性有待提高,一次生成可能有 2 3 条不能用。实际操作中,分开画面来做音效合成更方便调整。例如 20s 视频可分为 5 个不同的音效合成,如城市背景噪音、无声的脚步声、电子嗡嗡声、心跳加速、警笛声等。 2. 游戏中的生成式 AI 革命:音效是 AI 的一个具有吸引力的开放领域。已有学术论文探讨在电影中生成“现场效果音”(如脚步声)的想法,但在游戏中的商业产品尚属稀少。游戏中传统的音效生成和管理繁琐且重复不真实,使用实时的生成性 AI 模型来制作现场效果音可以在飞行中生成适当音效,每次略有不同,并能根据游戏参数响应。 3. 喂饭级教程:在视频制作中,音效库可以通过搜索框输入关键词(如开门声)来选择合适的音效试听并添加到音轨。
2025-03-15
作为一个法学本科生,人工智能小白,我可以从那些角度去深入学习人工智能,以达到可以参加人工智能开发的地步
对于法学本科生且人工智能小白的您,想要达到可以参加人工智能开发的地步,可以从以下角度深入学习人工智能: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,由于库和框架的支持不断增加,机器学习开始变得越来越流行。但要实现落地 AI 行业,我们必须了解这些代码背后的逻辑。一旦取消了现有框架的支持,了解这些框架背后的数学细节,编写这些算法中包含的复杂模式就会显得非常重要。至少需要了解概率、统计、线性代数、微积分和图论方面的知识。有了具体的数学知识,我们就可以充分利用机器学习的潜力,比如: 1. 凭借算法背后的内联数学知识,为数据集选择最佳算法。 2. 利用正则化器背后的数学知识帮助解决模型过拟合或高方差问题。 3. 利用图论的知识来分析数据特征之间更复杂的关系。 4. 利用优化器背后的数学知识来设计适当的成本函数。 机器学习需要的数学知识水平相对比较主观,取决于每个人的具体需求。比如正在进行机器学习的底层研究,可能需要具有深厚的数学知识,因为研究要求彻底深入。但对单纯的应用者来说,可能不需要任何高等数学的相关知识,掌握 prompt 的基础框架就可以很好的应用。
2025-03-15
请给我本科生写毕业论文向AI发送的指令
以下是一些本科生写毕业论文时向 AI 发送的指令示例: 1. “根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 2. 请基于以下案例情况,给我推荐 5 个类似案例:某公司员工在公司内部网络中发布了一篇批评公司管理的文章,引起了公司高层的不满。公司以员工违反了公司的规章制度为由,将其解雇。员工认为公司的行为侵犯了他的权利,将公司告上法庭。 3. 【提炼的案例事实(也可以让 AI 先提炼总结)or 直接把案例直接发给 AI,让 AI 基于以上事实推荐类似案例】 4. 根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】
2025-03-12
我想要写小说,应该用到什么工具和ai
如果您想要写小说,可以使用以下工具和利用 AI 相关技术: 文字方面:可以使用 GPT 脚本来生成文字内容。 图片方面:Midjourney 可用于生成图片。 视频方面:Runway 可用于处理视频。 音频方面:ElevenLabs、剪映可用于处理音频。 剪辑方面:剪映可用于剪辑。 其他方面:PS、AE 可用于其他相关处理。 在故事创作方面,可以按照以下 Prompt 模板来生成内容: 标题:"generate:小说的标题" 设置:"generate:小说的情景设置细节,包括时间段、地点和所有相关背景信息" 主角:"generate:小说主角的名字、年龄、职业,以及他们的性格和动机、简要的描述" 反派角色:"generate:小说反派角色的名字、年龄、职业,以及他们的性格和动机、简要的描述" 冲突:"generate:小说故事的主要冲突,包括主角面临的问题和涉及的利害关系" 对话:"generate:以对话的形式描述情节,揭示人物,以此提供一些提示给读者" 主题:"generate:小说中心主题,并说明如何在整个情节、角色和背景中展开" 基调:"generate:整体故事的基调,以及保持背景和人物的一致性和适当性的说明" 节奏:"generate:调节故事节奏以建立和释放紧张气氛,推进情节,创造戏剧效果的说明" 其它:"generate:任何额外的细节或对故事的要求,如特定的字数或题材限制" 如果您想用 AI 把小说做成视频,以下是一些工具和一般流程: 工具与网址: Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址: Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: Clipfly:一站式 AI 视频生成和剪辑平台。网址: VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 故事 AI 绘图:小说转视频的 AI 工具。网址: 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。内容由 AI 大模型生成,请仔细甄别。
2025-03-12
我想要制作一款小游戏,上架到抖音和微信,请你给我列举出需要用到的ai和软件
以下是制作小游戏并上架到抖音和微信可能需要用到的 AI 和软件: AI 方面:可以利用 AI 描述需求生成游戏代码,例如向云雀 3.5 等模型描述需求来辅助生成代码。还可以让 AI 处理图片、绘制角色形象等。 软件工具: 图像托管网站:用于上传游戏中的图片,选择无需登录、兼容性强的网站。 代码解释网站:有专门解释代码改游戏 bug 的网站,部分有免费额度。 GitHub:用于游戏发布,需要注册账号,设置游戏名,选择公共或锁定,上传文件等。 Zion:支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 Coze:可作为后端服务。 微信开发者工具:用于微信小程序的开发。
2025-03-10
我想把小说改编动画需要用到什么
将小说改编成动画通常需要以下步骤和工具: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可以利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 关于人物站位调度,有研究表明: 1. GPT4 准确度高,3 个样本可以认为是全对,竖向总是 5 个人物位置排 6 个人的缺陷可以规则代码修复。 2. ChatGPT3.5,gpt3.5turbo 虽然没有 GPT4 的视觉能力,却可以通过文字脑补小说人物在空间的布局,属于是额外收获。 3. Gpt3.5turbo 存在幻觉 33%左右的成功率,ChatGPT3.5 成功率 50%+。ChatGPT4 成功率 33%50%左右。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-10
我需要把文字转语言,并且生成一些图片,做成视频,用到那些AIr
目前有多种 AI 工具可以帮助您实现将文字转换为语言并生成图片制作视频的需求。例如,一些语音合成工具如百度语音、科大讯飞等可以将文字转换为语言;在图片生成方面,像 DALL·E2、StableDiffusion 等工具表现出色;而制作视频时,您可以考虑使用剪映等软件结合上述生成的语音和图片来完成。
2025-03-10
我现在需要做我的毕业设计名为“基于深度学习的草莓目标识别系统”,你能告诉我如何制作以及用到这里的哪些ai工具、
对于您的“基于深度学习的草莓目标识别系统”毕业设计,以下是一些制作的步骤和可能用到的 AI 工具: 制作步骤: 1. 数据收集:收集大量包含草莓的图像数据,并对其进行标注,例如标记出草莓的位置和类别。 2. 数据预处理:对收集到的数据进行清洗、增强、裁剪等操作,以提高数据质量和模型的泛化能力。 3. 选择模型架构:可以考虑使用常见的深度学习目标检测模型,如 Faster RCNN、YOLO 等。 4. 训练模型:使用预处理后的数据对选择的模型进行训练。 5. 模型评估:使用测试集对训练好的模型进行评估,如准确率、召回率等指标。 6. 模型优化:根据评估结果对模型进行调整和优化,例如调整超参数、增加数据量、使用更复杂的模型等。 可能用到的 AI 工具: 1. TensorFlow:一个广泛使用的深度学习框架,提供了丰富的模型构建和训练工具。 2. PyTorch:另一个流行的深度学习框架,具有灵活的编程接口和强大的计算能力。 3. OpenCV:用于图像处理和数据预处理。 4. LabelImg:用于图像数据的标注。 希望以上内容对您有所帮助,祝您毕业设计顺利!
2025-03-09
AI如何应用到供应链中
AI 在供应链中的应用主要包括以下几个方面: 1. 预测性维护:AI 可以用于预测供应链中机器设备的故障,帮助避免停机,保障供应链的稳定运行。 2. 质量控制:通过检测产品缺陷,提高供应链中产品的质量。 3. 优化供应链:利用 AI 分析历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,从而提高供应链的效率和降低成本。 4. 风险管理:诸如保障技术和技术标准等可信 AI 工具能够支持供应链风险管理。这些工具还能通过在这些系统中建立合理的信任,推动 AI 的采用和应用,使用户相信整个供应链中的关键 AI 相关风险已被识别、解决和减轻。例如,通过描述制造商应采取的确保 AI 系统安全的措施,技术标准可以向 AI 系统的购买者和用户提供保证,即已采取了适当的以安全为重点的措施,最终鼓励采用 AI。 5. 责任评估与分配:对 AI 框架的评估将评估法律责任在不同的 AI 应用和系统中是否得到有效和公平的分配。在实施框架时,将持续广泛地收集来自监管机构、行业、学术界和民间社会关于其对 AI 生命周期中不同参与者的影响的证据,以持续监测框架对 AI 供应链中参与者的影响。特别关注基础模型,因为它们可能对生命周期问责制构成潜在挑战,尤其是作为开源模型时。通过集中评估是否有足够的 AI 问责措施,可以评估是否需要对整个经济和 AI 生命周期中的 AI 责任进行进一步干预。
2025-03-08
我需要用deepseek生成参考文献,我需要指令
以下是关于 DeepSeek 生成参考文献的相关指令: 1. 基础指令框架: 四要素模板:如果不知道如何表达,还是可以套用框架指令。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 2. 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 高级调试策略: 模糊指令优化:对于宽泛需求,添加维度约束;对于主观表述,量化标准。 迭代优化法:首轮生成获取基础内容,特征强化加强某段的技术细节描述,风格调整改用特定语气并添加结论部分,最终校验检查时间逻辑一致性和可能的事实性错误。 希望这些信息对您有所帮助。
2025-03-14
deepseek论文指令
以下是关于 DeepSeek 提示词的详细内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 2. 系统响应机制 采用意图识别+内容生成双通道。 自动检测 prompt 中的任务类型/输出格式/知识范围。 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感。 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求。 占位符标记:用{{}}标注需填充内容。 优先级符号:>表示关键要求,!表示禁止项。 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估。 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差。 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌。 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型:宽泛需求、主观表述。 修正方案:添加维度约束、量化标准。 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 2. 迭代优化法 首轮生成:获取基础内容。 特征强化:请加强第三段的技术细节描述。 风格调整:改用学术会议报告语气,添加结论部分。 最终校验:检查时间逻辑一致性,列出可能的事实性错误。 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 七、效能监测指标 1. 首次响应准确率:目标>75%。 2. 多轮对话效率:问题解决平均轮次<3。 3. 复杂任务分解:支持 5 级子任务嵌套。 八、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植、文体杂交、学术口语化。 效果示例。 2. 领域穿透技术:行业黑话破解→“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 商业决策支持 九、场景化实战策略 1. 创意内容生成 2. 技术方案论证 十、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010”。 信息回溯:“请复述之前确认的三个设计原则”。 焦点重置:“回到最初讨论的供应链问题”。 2. 输出质量控制 问题类型:过度抽象、信息过载、风格偏移。 修正指令。 十一、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制”。 场景移植法:“假设在火星殖民地讨论该议题”。
2025-03-14
我想给deep seek设置长篇小说作家的角色设定,我应该说哪些指令
以下是为 Deep Seek 设置长篇小说作家角色设定时可以考虑的指令: 1. 明确写作风格和特点,例如指定模仿某位知名小说家的文风,如鲁迅的文风特点。 2. 描述故事的背景、主题和情节框架,比如设定故事发生在特定的历史时期或虚构的世界。 3. 规定小说的体裁和类型,如言情、科幻、悬疑等。 4. 对人物塑造提出要求,包括主要人物的性格、外貌、经历等。 5. 设定语言表达的要求,如语言的优美程度、词汇的丰富性等。 6. 明确字数范围,例如要求创作一部不少于 10 万字的长篇小说。 7. 给出情节发展的节奏和起伏要求,比如要求情节紧凑、高潮迭起。 8. 强调故事的逻辑性和连贯性,避免出现逻辑漏洞和情节跳跃。 在设置指令时,应尽量具体、清晰,避免过于宽泛和模糊的表述,例如将“写小说”优化为“创作以 AI 觉醒为背景的悬疑长篇,采用多视角叙事结构,人物形象鲜明,情节跌宕起伏,语言优美生动,字数不少于 20 万字”。同时,对于生成的内容,可以通过多轮对话进行增删改查,以达到理想的效果。
2025-03-12
我想给deep seek设置角色设定,我应该说哪些指令
以下是为 Deep Seek 设置角色设定时可以参考的一些指令: 1. 明确模型的具体任务,例如专门分析视频并从中找到特定内容。 2. 在向模型提供视频之前添加指令,如说明视频的数量、来源和对模型回答的限制,例如“这里有三个视频。每个都是来自 Deep Learning AI 的 LLM Ops 课程的一课。你的答案只基于视频。” 3. 为模型准备具体的问题,例如“请为每个视频创建一个摘要,概述其中讨论的主要内容。每个摘要限制在 100 词以内。”“在这三个视频中,哪一个视频的讲师运行并解释了 Python 代码'be_query_clients.query'?请指出在视频中可以找到这段代码的具体位置。”
2025-03-12
请帮我推荐优化大模型+知识库的提示词技巧,重点是解决将知识库配置给大模型做RAG后,召回率不高或者不遵循指令。
以下是关于优化大模型+知识库的提示词技巧,以解决将知识库配置给大模型做 RAG 后召回率不高或者不遵循指令的问题: 首先,了解 LLM 应用性能优化的推荐路径: 1. 从 prompt 工程开始把 LLM 应用快速跑起来。 2. 若遇到表现性能不足等问题,如结构化提示词占用上下文过长,可尝试精简提示词长度;若指令遵循度不足,则加强指令约束。 3. 若提示工程无法满足要求,分析问题,若缺失知识,先简单做知识库 RAG。 4. RAG 之后若想让模型表现更收敛更稳定,尝试微调模型。 5. 微调模型后,若模型表现变好,使用更多高级 RAG 技术,构造输入输出样本,进一步用于微调模型,构建正向迭代循环。 需要注意的是,该路径有个隐藏前提:该 LLM 应用依赖外部知识,需要 RAG。若不需要外部知识,则不需要使用 RAG,可以直接进入 prompt 工程与微调的正向迭代循环。 对于 RAG 流程中的检索有用信息部分,有以下改进策略: 1. 优化索引: 按照子部分索引:将文本块再拆分为较小的文本(例如单句),然后对这些小块进行多次索引。适用于有多个主题、有冲突信息的复杂长文本信息,确保与查询相关的上下文。 按照文本框可以回答的问题索引:让 LLM 生成与拆分的文本块相关的假设性问题,并将这些问题用于索引,适用于用户没有提出非常明确的问题,减少模糊性。 按照文本块的摘要进行索引:适用于文本框中有多余信息或者与用户查询无关细节的情况。 2. 重排 rerank:搜到相似信息后,选择策略,大部分场景下选择最相似的即可。 在从知识库中检索出内容后利用大模型进行总结时,有两点需要注意: 1. 优化 Prompt,但此处不展开,可参考相关文章。 2. 选择合适的大模型,考虑上下文长度、聪明度和生成速度。若回答场景是很长的文档,可能更关注上下文长度;大多数情况下,大模型越聪明,生成速度可能越慢。
2025-03-12