直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我是一名高中历史老师,请问用什么大模型能帮我做教学设计

回答

以下为您推荐一些利用大模型辅助高中历史教学设计的案例:

  • 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e-674c-4410-893c-4ae3f1b7412e/continue 。
  • 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。
  • 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。

您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

教育:一个历史老师用GPT给学生讲课

推荐一篇文章,一个历史老师用GPT给学生讲课,https://resobscura.substack.com/p/simulating-history-with-chatgpt亮点有两个:1、通过GPT生成一个"沉浸式"历史片段游戏,让学生扮演一个角色"设身处地"的做决策。2、学生的作业是找出GPT的错误。可以试试这个案例,明朝灭亡,南京,1645年5月(GPT3.5)https://chat.openai.com/share/86815f4e-674c-4410-893c-4ae3f1b7412e/continue(文科生未来的作业越来越难了)英文版本:Since January of 2023,I’ve been experimenting with using large language models(LLMs)like ChatGPT as a teaching tool in my history classes at UC Santa Cruz.I’ve been thinking about the implications of AI in teaching since I first began using GPT-2 back in 2019.I have also been following along avidly as my wife[Roya Pakzad](https://www.royapakzad.co/)works on testing the human rights impacts of AI systems(Roya was a consultant for OpenAI in 2022,where she served on the “red team” for adversarial testing of a pre-release version of GPT-4; you can read her account of that work[here](https://royapakzad.substack.com/p/old-advocacy-new-algorithms)).What follows are some thoughts about what I believe to be a novel use of LLMs:using them to simulate interactive historical settings as part of a university assignment.The results of these early trials are why I am personally much more excited about generative AI than many of my colleagues — though I also concede that in the short term,cheating will be a major problem.

教育:一个历史老师用GPT给学生讲课

For example,imagine a high school student who is asked to analyze the first letter of Hernán Cortés to the Emperor Charles V.The student might dutifully paraphrase the conquistador’s account of the Aztec capital of Tenochititlan — including this[famously jarring description of Aztec temples as “mosques”](https://archive.org/details/fernandocorteshi01cort/page/154/mode/2up)(mezquitas).A history major would be able to go further.Why did Cortés use this confusing term?Cortés was born during the final decade of the[Reconquista](https://en.wikipedia.org/wiki/Reconquista).For this reason,he was intimately acquainted with non-Christian religiosity — but only in the context of Muslim religiosity.A large religious structure that was not a Christian church was for him,almost by default,a mosque — even when it was actually the[Templo Mayor](https://en.wikipedia.org/wiki/Templo_Mayor).Likewise,a history major would be able to recognize that Cortés was writing within a genre — an ambitious subject’s letter to a monarch — which tends toward self-promotion.And they would be able to fact check Cortés’ claims against those of other primary and secondary sources.Perhaps they would conduct some exploratory Google searches along the lines of “primary source conquest of Mexico” or “Aztec account of Cortés.” They might also look around for recent secondary sources by searching library catalogues and the footnotes on Cortés’ Wikipedia page and discover Matthew Restall’s[revisionist take](https://notevenpast.org/when-montezuma-met-cortes-the-true-story-of-the-meeting-that-changed-history-by-matthew-restall-2018/)on the subject.

教育:一个历史老师用GPT给学生讲课

When history majors encounter LLMs,then,they are already trained to recognize some of the by-now-familiar pitfalls of services like ChatGPT — such as factual inaccuracies — and to address them via skills like fact-checking,analyzing genre and audience,or reading “around” a topic by searching in related sources.Importantly,too,because so many sources are out of copyright and available in multilingual editions on Wikipedia and Wikisource,language models are abundantly trained on historical primary sources in hundreds of different languages.[(1)](https://resobscura.substack.com/p/simulating-history-with-chatgpt#footnote-1-136683347)For these reasons,I agree with Tyler Cowen that language models are[specifically a good thing for historians](https://marginalrevolution.com/marginalrevolution/2023/01/chatgpt-and-the-revenge-of-history.html)— but I would go further and say that they are also specifically a good thing for history majors.On the other hand,I foresee major problems for history teachers and other educators in the short-term.[Ted Underwood is right](https://tedunderwood.com/2023/07/31/we-can-save-what-matters-about-writing-at-a-price/):we professors are going to have to fundamentally rethink many of our assignments.I’ve seen many people dismiss ChatGPT as an essay writing tool because simply plugging in a prompt from an assignment results in a weak piece of writing.But LLMs are all about iterative feedback,and experimenting with well-known prompting methods dramatically improves results.

其他人在问
请问有ai生成架构图的工具么
以下是一些可以生成架构图(包括逻辑视图、功能视图、部署视图)的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建多种类型图表。 7. PlantUML:文本到 UML 转换工具,通过编写描述生成序列图等,辅助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 请注意,这些工具并非都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否支持特定建模语言、是否与特定开发工具集成、偏好在线工具或桌面应用程序等。 此外,以下是一些可以辅助或自动生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 5. 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)的生成设计工具,可根据设计目标和约束条件自动产生多种设计方案。 这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。 以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
请问AI网站设计的市场规模有多大
以下是关于 AI 网站设计相关的市场规模信息: 近一年赛道单月访问量增加了 448 万,年增长率为 19%。 123RF 的访问量减少了 196 万,而 Microsoft Designer for Web 的访问量增长了 519 万,占整个赛道变化的 116%。 Logo 生成方面,天花板潜力为小众市场,数亿美金;总体趋势下降,月平均增速为10 万 PV/月;对标公司为 Adobe。 在竞争方面,Top1 占比 51%,Top3 占比 85%,马太效应为中,网络效应为弱,大厂入局情况为否,大厂占比低,技术门槛低。 此外,如果您不确定如何为 AI 网站设计 logo,可以使用在线的 AI logo 生成器,如 Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 等。
2024-11-07
请问有没有AI工具可以实现把一个物体生成多个角度
目前有一些 AI 工具可以实现把一个物体生成多个角度。例如,在图像生成方面,像 OpenAI 等机构的相关模型能够生成同一场景的多个角度,包括具有物理上准确的光线,甚至在某些情况下还能生成物理上准确的流体和雨水。 在生成 AI 人物形象时,也可以通过选择不同的拍摄角度来实现。常用的角度包括高角度、低角度和平视角度。 高角度:位于被拍摄对象的上方,适合拍摄俯视角度的场景,可以突出被拍摄对象的大小和高度。 低角度:位于被拍摄对象的下方,适合拍摄仰视角度的场景,可以突出被拍摄对象的高度和威严感。 平视角度:与被拍摄对象在同一高度,适合拍摄平面场景,可以突出被拍摄对象的水平线和平衡感。 此外,人物构图的视角还可以按照相机相对于被拍摄对象的位置,分为正面、背面和侧面等不同方向。 正视角:拍摄对象正对着相机的姿态,使人像呈现出正面的视角。 后视角:从被摄对象的背后拍摄的视角,能营造出神秘或者引人遐想的氛围。
2024-11-05
请问修复旧照片怎么处理?
修复旧照片可以按照以下步骤进行处理: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。stableSR 是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写,以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,可在显存不够的情况下将图片放大到足够倍数。 5. 对于复杂的照片,可先在 ps 里进行角度调整和照片裁切,然后按照上述步骤上色。若直接上色效果不佳,比如像加了黄色滤镜或年代感太强,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。比如从网上找相关照片让 AI 匹配色调,加入第二个 controlnet 控制颜色,使用 t2ia_color 的模型,给简单的关键词,如“蓝天、绿树、灰石砖”。 6. 修复时必须使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2024-10-31
请问修复旧的照片怎么处理?
修复旧照片可以按照以下步骤进行处理: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章——。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。stableSR 是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章——。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写,以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下,将图片放大到足够的倍数。 5. 对于复杂的照片,如人物多、场景复杂、像素低的照片,可以先在 ps 里面进行角度调整和照片裁切,然后按照上述步骤进行上色。如果直接上色效果不佳,比如像加了一层黄色滤镜或颜色指定导致画面污染严重,可以放弃人物服装的颜色指定,只给一个场景方向,让 AI 自行决定。比如从网上找一张匹配色调的照片,加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,关键词可以只给“蓝天、绿树、灰石砖”等简单的词。 6. 修复时必须要使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 7. StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 8. 一个 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。这三个文件可以在百度云盘的链接中获取。安装好之后,可以用一张从网上找的神仙姐姐的照片做测试。 需要注意的是,在修复过程中,不同的照片可能需要根据具体情况进行调整和尝试,以达到最佳的修复效果。
2024-10-31
请问怎么制作一个AI视频
制作一个 AI 视频通常可以按照以下流程进行: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,还有以下制作流程可供参考: 1. 写剧本/分镜。 2. 生图。 3. 生视频。 4. AI 声音。 5. 剪辑。 或者: 1. 准备内容:先准备一段视频中播放的内容文字,可以是产品介绍、课程讲解、游戏攻略等,也可以利用 AI 生成这段文字。 2. 制作视频:使用剪映 App 对视频进行简单处理。电脑端打开剪映 App,点击“开始创作”,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道,然后将准备好的文字内容替换默认文本内容。
2024-10-29
我要用数字人AI做教学讲课
数字人 AI 用于教学讲课具有诸多优势: 1. 突破时空限制:可以让历史人物如牛顿亲自授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,学生能与任何历史人物对话交流,不受时空约束。 2. 个性化教学:能根据学生的学习情况、兴趣和偏好提供定制化学习计划和资源,因材施教,提高学习效率和成果,缓解教育资源不平等问题。 3. 提高参与感:数字教师博学多能、善解人意且不受情绪左右,基本可实现一对一辅导,让学生参与感更高。 4. 丰富教学形式:如卡尔的 AI 沃茨的数字人课程,包含 15 节视频课,持续更新并增加最新内容,还有课外社群辅导。课程回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯等。 5. 优化工作流:数字人的出现能在制作个人 IP 短视频、配音、直播、智能客服、虚拟偶像等领域完成赋能。 关于数字人课程的学习: 1. 推荐卡尔的 AI 沃茨的数字人课程,建立了完整的数字人学习体系。 2. 报名方式可通过扫码查看课程详细内容和介绍。 在与 AI 交互方面: 1. 对于提示词工程和学习提示词,有人持反对观点,认为像打字和写作一样,不断尝试和大模型交互是最佳方法。 2. 和大模型交互不一定需要遵循规则,未达成目的可锲而不舍地开新窗口再尝试,或更换模型。 3. 用 Markdown 格式清晰表达问题有助于提高与大模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-11-17
适合辅助英语教学的AI助手或者提示词
以下是一些适合辅助英语教学的 AI 助手和提示词相关的信息: AI 助手: Grammarly:可进行英语写作和语法纠错,改进英语表达和写作能力。 Call Annie:用于口语练习和发音纠正,提供实时反馈和建议。 Duolingo:自适应学习平台,为用户量身定制学习计划,提供个性化英语学习内容和练习。 ChatGPT:可进行英语会话练习和对话模拟,提高交流能力和语感。 提示词: 提示词设计公式之——RTFC: 角色:指定 AIGC 所扮演的角色。 任务:明确告诉 AIGC 要完成什么任务。 要求:概述这个任务需要遵守的规则、标准和实现的结果。 说明:提供更多关于任务和要求的详细具体上下文信息。 生成式人工智能教学应用举例(1):收集整理语料: 帮我列举场景下的常用【英语】词汇 50 个。 把以上词汇转换成表格形式输出。 到【医院就医】的时候,常用的【英语】句型有哪些? 用【英语】表达【心情】【不愉快】的句式有哪些? 在【英语高考作文试题】中,常用的表达句型有哪些?并给出例句。 请你给中学生介绍《论语》的主题思想,并将《论语》的 10 条名句翻译成英语。 注:可以把蓝色字体替换成不同的语种和场景,教师根据不同的教学场景,设计恰当的提示词,用生成式人工智能辅助教学。
2024-11-15
适合辅助教学的AI助手或者提示词
以下是一些适合辅助教学的 AI 助手和提示词相关的内容: 教师的 AI 减负指南中提到,提示词技能是教师用好人工智能的基本教学技能。提示词技能指用户设计提供给生成式人工智能大模型的一段文字或文本的技能,其内容决定了 AIGC 生成内容的质量。提示词设计公式为 RTFC,包括指定 AIGC 所扮演的角色、明确告诉 AIGC 要完成的任务、概述任务需要遵守的规则、标准和实现的结果,以及提供更多关于任务和要求的详细具体上下文信息。例如,生成式人工智能教学应用举例中,教师可以设计提示词“帮我列举场景下的常用【英语】词汇 50 个”“把以上词汇转换成表格形式输出”等。 对于 SD 新手,有一些提示词相关的资源,如 Majinai: 等。 沃顿商学院给教师和学生提供了提示词库,教师专用提示中提到,作为教学助理,要协助教师规划课程,先向老师介绍自己并询问教学科目及学生层次,等待回复。然后根据老师的情况,如是否有教学大纲等,进行后续的沟通和建议。
2024-11-15
如何用ai开发一个教学软件
以下是关于如何用 AI 开发一个教学软件的一些信息和建议: 拜登签署的 AI 行政命令中提到,要通过创建资源来塑造 AI 在教育方面的潜力,以支持教育工作者部署启用 AI 的教育工具,例如在学校提供个性化辅导。 一些 AI 产品案例也能提供参考,比如: 学习:用 AI 做播客笔记 教学:帮助学生做好组会准备 医疗:蛋白质结构预测和蛋白质合成 做调研:我用这条 prompt,2 小时帮同学干完了 3 篇调研报告 做调研:用 ChatGPT 做调研 此外,还可以参考相关指南,如使用人工智能来帮助教育,包括自学学习。可以要求人工智能解释概念,但要注意因为其可能产生幻觉,对于关键数据要根据其他来源仔细检查。
2024-11-15
AI教学
以下是关于 AI 教学的相关内容: 生成式人工智能在教学中的应用: 教师可根据不同教学场景设计恰当提示词,用其辅助教学,例如收集整理语料。 可应用于多种方面,如 AI 搜索总结、AI 思维导图、AI PPT 制作、AI 论文润色、AI 专业翻译、AI 摘要重点、AI 会议纪要、AI 公文撰写等。 能帮助精准回答学生问题,协助教师,为教师提供数字资源。 涉及自适应学习、智慧课程清华的探索、AI 助教等。 获取信息和学习东西: 人工智能可用于教育,帮助自学学习,能解释概念并获得较好结果。 但使用时需注意可能产生幻觉,关键数据要根据其他来源仔细检查。 教学的不同时代特征: 口传时代:通过口诀、歌谣、神话故事等在生活场景、部落仪式中以口耳相传、身体力行示范等方式传授生存技能和传承部落文化。 手抄时代:通过私塾、官学、书院等,以背诵领会、注疏评点等方式掌握典籍知识。 印刷时代:在学校、课堂、图书馆等,通过讲授说理、考试评价等进行启蒙教育和专业教育。 电子媒体时代:在课堂、演播室等,通过函授、远程教育等方式开展基础教育、职业教育等。 数字媒体时代:借助互联网等进行教学。
2024-11-15
我想要翻译最准确的教学领域的AI
以下是关于生成式人工智能在教学领域应用的相关内容: 生成式人工智能在教学中的应用包括: 央馆数 20 万长上下文联网总结。 如 Perplexity 这类付费且高质量的工具。 教师根据不同教学场景设计恰当提示词,用其辅助教学,例如宝⽟ XP 的翻译提示词不断迭代。 常见的应用有 AI 搜索总结、AI 思维导图、AI PPT 制作、AI 论文润色、AI 专业翻译、AI 摘要重点、AI 会议纪要、AI 公文撰写等。 可以收集整理语料,将蓝色字体替换成不同语种和场景。 教学应用举例:收集整理语料。 自适应学习、智慧课程清华的探索、AI 助教帮助精准回答学生问题。 涉及不同时代的教育特点,如口传时代传授生存技能传承部落文化,通过口诀、歌谣、神话故事等在生活场景和部落仪式中口耳相传、言传身教;手抄时代掌握典籍知识培养识字写字能力;印刷时代的启蒙教育、专业教育等;电子媒体时代的多学科知识实用技能等。 不同时代的教育组织形态和教学方式也有所不同,如私塾、官学、书院等,以及背诵领会、注疏评点等方式。
2024-11-11
chilloutmix模型
以下是关于 chilloutmix 模型的相关信息: 在腊八节相关的生成中,模型为 chilloutmix_NiPrunedFp32Fix,生成尺寸与草稿图保持一致,有正、负面关键词及 ControlNet 设置等具体参数。 在猫猫相关的生成中,虽然作者建议使用 chilloutmix_NiPrunedFp32Fix 模型,但也可以尝试其他模型。 在 AIGC Weekly 09 中,提到从 civitai 下载 ChilloutMix 模型并放到整合包 models\\Stablediffusion 目录里启动 web UI 切换模型。
2024-11-17
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17
sd模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入到 SD 模型中,经过一定迭代次数生成符合文本描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩的图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示将输入图片重绘以更符合文本描述。比如在之前生成的沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本信息编码,生成 Text Embeddings 特征矩阵,用于控制图像生成。 CLIP 模型包含 Text Encoder 和 Image Encoder 两个模型,在 Stable Diffusion 中主要使用 Text Encoder 模型。它将输入的文本 Prompt 编码转换成 Text Embeddings(文本的语义信息),通过 UNet 网络中的 CrossAttention 模块嵌入 Stable Diffusion 中作为 Condition,对生成图像的内容进行控制与引导。目前 SD 模型使用的是中的 Text Encoder 模型。 CLIP ViTL/14 中的 Text Encoder 是只包含 Transformer 结构的模型,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小是 123M,输出的 Text Embeddings 维度为 77x768。 以下是相关资源获取方式: SD 模型权重百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得包含多种模型权重的资源链接。 SD 保姆级训练资源百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2024-11-17
大模型可以修复老旧的分辨率低的视频吗
大模型在修复老旧低分辨率视频方面是可行的,但具体效果因模型和方法而异。 例如,使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型、StableSR 模块和 VQVAE 等,通过不同的放大方法进行测试。如“Ultimate SD upscale”脚本放大,重绘幅度不同效果有别,重绘幅度大可能导致人物失真。“后期处理”的放大方法能使眼神更锐利,但对模糊的头发改善有限。而 StableSR 的放大则需要进行相应的模型和参数调整。 另外,像 Sora 这样的大型视觉模型,能够在原始尺寸上训练、理解和生成视频及图像。它可以处理不同格式和分辨率的视觉数据,保持原始宽高比,改善生成视频的构图和框架。其基础模型用于低分辨率视频生成,通过级联扩散模型细化提高分辨率,采用 3D UNet 架构,结合多种技术和方法,能生成高保真度且具有可控性的视频。
2024-11-17
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
什么工具/模型/API 可以根据宠物照片生成数字宠物 可以有简单的活动。
以下是一个可以根据宠物照片生成数字宠物并具有简单活动的工具/模型/API: 出门问问 Mobvoi 的照片数字人工作流及语音合成(TTS)API。 出门问问是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家提供面向创作者的 AIGC 工具、AI 政企服务,以及 AI 智能硬件。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,致力成为全球 AI CoPilot 的引领者。 在 ComfyUI 全球领导力峰会上,特意搭建了数字人 workflow(照片数字人驱动),仅需上传一张照片,输入一段文字或者上传一段音频,就可以生成短视频让“照片开口说话”。本次活动特意提供了免费 api 额度及操作指南给大家进行体验。以下是一些不同风格的照片驱动效果展示:
2024-11-16