Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

rag教程有吗

Answer

以下为您提供关于 RAG 的教程:

首先,有一篇题为“胎教级教程:万字长文带你理解 RAG 全流程”的文章。作者大圣指出这是面向普通人的 RAG 科普,而非技术向文章。文章强调 RAG 技术在当前 AI 发展中的重要性,其衍生产品能为企业和个人带来效率提升,但也存在局限性。作者希望通过阐述 RAG 完整流程,让读者全面认知该技术,管理好预期,在使用相关产品时能充分发挥其潜力。适合包括 AI 爱好者、企业老板、AI 产品经理等人群。

其次,“【AI+知识库】商业化问答场景,让 AI 回复更准确,一篇专为所有‘小白’讲透 RAG 的实例教程(上篇)”中提到,通过一个简单的问答示例展示了有时回答不准确的情况,从而引出 RAG 这一优化回答的专业术语。接着介绍了基础概念,RAG 即检索增强生成,由检索器和生成器组成,适合处理需要广泛知识的任务。

最后,在“胎教级教程:万字长文带你理解 RAG 全流程”中还提到了 RAG 全貌概览。RAG 流程分为离线数据处理和在线检索两个过程,离线数据处理构建知识库,在线检索则是利用知识库和大模型进行查询。以构建智能问答客服为例来了解 RAG 流程中的 What 与 Why 。

Content generated by AI large model, please carefully verify (powered by aily)

References

胎教级教程:万字长文带你理解 RAG 全流程

大家好,我是大圣,一名致力于在AI时代打造超级个体的软件开发工程师。继Coze的胎教级教程之后,我再次为大家带来RAG(检索增强生成)技术的胎教级别教程。这篇文章不是一篇面向RAG研究者的技术向文章,而是面向普通人的RAG科普。这篇文章一共1.6万字,我为什么要花费大的心力写这篇文章呢?因为在当前AI技术的发展中,工作流和RAG已成为核心应用。RAG不仅是一项真正落地的AI技术,而且其衍生产品不仅服务于企业,更能为个人效率带来显著提升。然而,任何技术都有其局限性。许多人初次接触RAG时兴致勃勃,但实际使用后却失望而归。这并非RAG技术不够强大,而是因为期望过高。因此,我希望通过全面详细地阐述RAG的完整流程,让你对这项技术有更全面的认知。这样,在使用RAG相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力在开始花费你的时间看这篇长文之前,我希望先管理好你的预期这是一篇关于RAG的科普性文章,我会用我一贯的文风(通俗易懂)给小白讲清楚RAG的各个环节严格来讲,这不是一篇技术向文章,为了让更多人可以听懂,我隐去了一些不重要的技术细节和术语本文适合任何人,不包括但不限于:AI爱好者/为企业寻找知识库解决方案的老板/AI产品经理等读完本文,我希望你在使用任何知识库工具的时候,对每一步操作都是清晰的,做到知其然,知其所以然废话不多说,我们开始!

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

胎教级教程:万字长文带你理解 RAG 全流程

旁白:一路千辛万苦,终于要真正了解RAG的全貌了,好激动前面的开胃菜已经完毕,这里我们进入正餐,先上一张图注:这张图引用自:https://mp.weixin.qq.com/s/37tKVQbxenVVBAeMZ334aQ公众号:AI花果山一位RAG大佬,正在编写一系列教程《RAG高效应用指南》这张图将会是我们本章的知识地图,看到这么多的概念,不要慌,我们先整体理解下RAG。自顶向下,RAG的流程分为离线数据处理和在线检索两个过程。我们前面讲到,知识库是RAG的“活字典”,可以让AI随时进行查阅。而离线数据处理的目的就是为了构建出这本“活字典”。经过离线数据后,知识则会按照某种格式以及排列方式存储在知识库中,等待被使用。而在线检索则是我们使用利用知识库+大模型进行查询的过程。在学习一门新知识的时候,是什么与为什么同等重要是什么让你知其然为什么让你知其所以然接下来我们就以RAG最经典的应用场景《构建智能问答客服》来了解RAG所有流程中的What与Why

Others are asking
请帮我推荐优化大模型+知识库的提示词技巧,重点是解决将知识库配置给大模型做RAG后,召回率不高或者不遵循指令。
以下是关于优化大模型+知识库的提示词技巧,以解决将知识库配置给大模型做 RAG 后召回率不高或者不遵循指令的问题: 首先,了解 LLM 应用性能优化的推荐路径: 1. 从 prompt 工程开始把 LLM 应用快速跑起来。 2. 若遇到表现性能不足等问题,如结构化提示词占用上下文过长,可尝试精简提示词长度;若指令遵循度不足,则加强指令约束。 3. 若提示工程无法满足要求,分析问题,若缺失知识,先简单做知识库 RAG。 4. RAG 之后若想让模型表现更收敛更稳定,尝试微调模型。 5. 微调模型后,若模型表现变好,使用更多高级 RAG 技术,构造输入输出样本,进一步用于微调模型,构建正向迭代循环。 需要注意的是,该路径有个隐藏前提:该 LLM 应用依赖外部知识,需要 RAG。若不需要外部知识,则不需要使用 RAG,可以直接进入 prompt 工程与微调的正向迭代循环。 对于 RAG 流程中的检索有用信息部分,有以下改进策略: 1. 优化索引: 按照子部分索引:将文本块再拆分为较小的文本(例如单句),然后对这些小块进行多次索引。适用于有多个主题、有冲突信息的复杂长文本信息,确保与查询相关的上下文。 按照文本框可以回答的问题索引:让 LLM 生成与拆分的文本块相关的假设性问题,并将这些问题用于索引,适用于用户没有提出非常明确的问题,减少模糊性。 按照文本块的摘要进行索引:适用于文本框中有多余信息或者与用户查询无关细节的情况。 2. 重排 rerank:搜到相似信息后,选择策略,大部分场景下选择最相似的即可。 在从知识库中检索出内容后利用大模型进行总结时,有两点需要注意: 1. 优化 Prompt,但此处不展开,可参考相关文章。 2. 选择合适的大模型,考虑上下文长度、聪明度和生成速度。若回答场景是很长的文档,可能更关注上下文长度;大多数情况下,大模型越聪明,生成速度可能越慢。
2025-03-12
RAG构建本地知识库
RAG(Retrieval Augmented Generation,检索增强生成)是一种利用大模型能力搭建知识库的技术。其主要应用场景是当需要依靠不包含在大模型训练集中的数据时。 一个RAG的应用可以抽象为以下5个过程: 1. 文档加载:从多种不同来源加载文档,如PDF、SQL、代码等,LangChain提供了100多种不同的文档加载器。 2. 文本分割:文本分割器把Documents切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将Embedding后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给LLM,LLM会通过问题和检索出来的提示一起来生成更加合理的答案。 简单来说,RAG就是大模型+知识库,从广泛的知识库数据中检索相关片段,然后由大模型根据这些内容生成答案。这种方式一方面可以减大模型的幻觉,提高其在特定任务上的表现,更加贴合实际应用的需求,另一方面可以明显提高搜索文档信息和生成回答的效率和体验。 LangChain是一个可以实现RAG的开源框架,它提供一些基础的组件和工具,如知识库管理、文本处理、模型加载等,允许开发人员将大语言模型(LLM)与外部数据源相结合,快速搭建自己的应用。 在实际项目中,比如此次的政府政策问答实践,由于政策的复杂性和传统智能问答产品的局限性,选择LangChainChatchat框架构建政策文档的本地知识库,实现大模型基于本地知识库内容生成回答,为用户提供政策问答和解读服务,节省查找和理解政策的时间。
2025-03-11
企业级rag系统开发框架
企业级 RAG 系统开发框架如下: 首先,通过数据预处理引擎(如 Unstructured)将企业无结构文件(如 PDF、幻灯片、文本文件)从数据孤岛(如 Google Drive 和 Notion)加载、转换为 LLM 可查询格式,并将这些文件“分块”成更小的文本块,以实现更精确的检索,然后作为向量嵌入和存储在数据库(如 Pinecone)中。 当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。LLM 会从检索到的上下文中合成答复返回给用户。 在实际生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和“提示链”,不同类型的任务并行执行多个“提示链”,然后将结果综合在一起生成最终输出。 RAG 是检索增强生成(Retrieval Augmented Generation)的简称,概括起来是知识检索+内容生成,主要组成包括数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。 RAG 的优势在于: 大语言模型技术存在输出结果不可预测、知识有截止日期、无法满足实际业务需求等问题,而 RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。 RAG 可以和微调结合使用,两者并不冲突。微调适用于模型需要复制特定的结构、样式或格式时,RAG 适用于模型需要回答特定的询问或解决特定的信息检索任务。但 RAG 不适合教模型来理解广泛的领域或学习新的语言、格式或样式。 同时,通用的基础大模型无法满足实际业务需求的原因包括: 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:大模型基于数学概率的文字预测,存在提供虚假、过时、通用或低可信度信息的情况。 数据安全性:企业重视数据安全,不愿承担数据泄露风险将私域数据上传第三方平台训练。
2025-03-08
RAG内LLM的主要作用,简单概括
RAG(检索增强生成)中LLM(大语言模型)的主要作用包括: 1. 利用外部检索到的知识片段生成更符合要求的答案。由于LLM无法记住所有知识,尤其是长尾知识,且知识容易过时、不好更新,输出难以解释和验证,容易泄露隐私训练数据,规模大导致训练和运行成本高,通过RAG为LLM提供额外且及时更新的知识源,有助于生成更准确和有用的回答。 2. 在RAG的工作流程中,LLM接收整合后的知识片段和特定指令,利用其推理能力生成针对用户问题的回答。 3. 事实性知识与LLM的推理能力相分离,LLM专注于运用推理能力处理外部知识源提供的信息。
2025-03-08
RAG是什么,简单概括
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 简单来说,它通过检索的模式为大语言模型的生成提供帮助,使大模型生成的答案更符合要求。 RAG 对于 LLM 来说很重要,因为 LLM 存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。 而 RAG 具有一些优点,如数据库对数据的存储和更新稳定,数据更新敏捷且可解释,能降低大模型输出出错的可能,便于管控用户隐私数据,还能降低大模型的训练成本。 RAG 概括起来是知识检索+内容生成,可以理解为大模型的开卷考试,其主要组成依次是数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。 推荐阅读: 如何让 LLM 应用性能登峰造极:https://mp.weixin.qq.com/s/Kr16ub_FN6pTF6acse6MA 大模型主流应用 RAG 的介绍——从架构到技术细节: https://luxiangdong.com/2023/09/25/ragone/ 高级 RAG 技术:图解概览: https://baoyu.io/translations/rag/advancedragtechniquesanillustratedoverview
2025-03-08
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来实现。Meta AI 引入 RAG 来完成这类任务,它把信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入并检索相关/支撑文档,给出来源(如维基百科),这些文档作为上下文和原始提示词组合给文本生成器得到最终输出,能适应事实随时间变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有数据库存储和更新稳定、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。 在 RAG 系统开发中存在 12 大痛点及相应的解决方案。
2025-03-06
知识库接入deepseek教程
以下是关于知识库接入 DeepSeek 的相关教程链接: 此外,还有以下相关内容可能对您有帮助: 中包含大模型及知识库使用讲解与问题解答。 中有工作流创建、模型能力及相关问题探讨。 涉及通义千问相关应用及明天课程安排交流。
2025-03-12
Coze 智能体 教程 初学者 3个月内的内容
以下是为初学者提供的 Coze 智能体相关教程,预计在 3 个月内可以完成学习: 1. 页面布局: 常见的左右、上下布局及嵌套方法,包括如何设置容器实现左右布局、调整大小分割等,强调外层高度设置的重要性。 溢出处理方式及内边距影响,建议初学者用固定宽高布局。 换行布局及元素分布设置,用于图片排版。 证件照应用搭建过程及布局设置,如创建应用、清理页面,设置第一个 div 容器,证件照基础界面为上下布局,分标题、示例、操作展示三块,需拖三个容器,顶部高度大概 100。 2. 证件照应用的用户界面搭建与业务逻辑构建: 用户界面搭建,包括各部分尺寸、布局、组件设置,如文本、图片、表单等。 业务逻辑搭建,创建工作流,添加图片理解、图像生成、智能换脸等插件,设置参数、提示词,并告知文档地址在社区智能体 1.3 共学里。 3. 工作流与代码(重度用户): 对于轻度用户,不需要工作流;对于重度用户,可参考官方文档:https://www.coze.cn/docs/guides/welcome 。 工作流的优势,如解决速度慢和可能出错的问题。 介绍主工作流和 AI Project 工作流,以及中间用到的 python 代码和结合工作流修改的「人设与回复逻辑」。 4. 基础通识课: 在 cos 主页有新手教程文档,可据此构建智能体。 工作流偏向节点调用,可通过 prompt 构建提示词并优化。 能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。 Nimbus 介绍智能交互相关内容,包括有趣的智能体、插件商城、扣子案例、模型社区并答疑。 AI 编程课前准备及相关工具、账号注册说明,如注册阿里云账号、安装无影、注册 GitHub 账号等。
2025-03-12
core案例拆解教程
以下为为您提供的几个案例拆解教程: Coze 应用实战指南 吐槽心灵鸡汤 核心功能说明:一个允许用户输入心灵鸡汤类内容,AI 生成对应的反心灵鸡汤,并展示在前端页面的应用。 核心操作流程拆解: 1. 用户在页面输入指定文本。 2. 用户在页面点击【开喝】按钮。 3. Coze 后台调用工作流生成对应内容。 4. 工作流生成的内容展示在前端界面内。 核心前端设计拆解: 1. 用户界面提供一个元素 A(Coze 中称作组件),让用户输入内容。 2. 用户界面提供一个按钮 A,让用户点击后调用工作流。 3. 用户界面提供一个元素 B,向用户展示工作流的结果。 核心业务逻辑拆解: 1. 读取元素 A 的用户输入。 2. 将用户输入传递给 AI 大模型。 3. AI 大模型按照提示词设定生成指定内容。 4. 在元素 B 展示 AI 大模型生成的内容。基于上述业务逻辑,只需要设计一个简单的工作流即可,该工作流由【开始】节点(用户输入)、【大模型】节点(AI 生成内容)、【结束】节点构成(内容输出)。 Pika 新功能“Pikadditions” 厕所开门见猴 原视频:人物推开厕所门→空马桶镜头。 角色图片:一张猴子坐在马桶上的图片。 提示词:“When the door opens in the video,we see a monkey with reading glasses sitting in the toilet reading a book.” 拆解逻辑: 1. 时间触发:When the door opens→绑定视频动态事件(门开合过程)。 2. 空间绑定:sitting in the toilet→将猴子坐标锁定在马桶实体上。 3. 行为设计:reading a book→赋予角色符合场景逻辑的行为(厕所常见活动)。 4. 细节强化:with reading glasses→用视觉符号增强角色合理性(模仿人类行为)。 首尾帧循环视频制作 宇航员案例 1. MJ 生成宇航员近照。 2. 截取头盔中反射的宇航员作为第 3 步垫图和 sref 使用。 3. 生成与头盔中宇航员接近的半身像。 4. 打开即梦,选择使用尾帧。重点:一般情况可以不选择运镜控制,但这张图需要选择变焦推进,控制镜头推进到头盔里,不然 AI 会自己选择更容易实现的后拉运镜。 5. 得到。 6. 同样的做法得到尾帧回到首帧的视频,再用剪映拼接一下两段视频即可得到在他人与自己中无限轮回(有时候起始或结束有停顿,保证整条视频衔接流畅可以掐掉)。
2025-03-12
aigc 教程
以下为您提供一些 AIGC 教程相关的内容: 1. 2024 AIGC 营销视频生态创新大赛: 10 月 19 日:EM7,南柒() 10 月 23 日:从构思到可视化——AI 脚本与分镜创作(),嘉宾为娜乌斯嘉,是 AI 绘画知名 UP 主、全网粉丝 20w、国内首批 AIGC 应用研究先驱者、模型师、comfyUI 工程师、动画艺术和心理学双硕士。 11 月 01 日:AIGC 制作商业片进阶教程( 11 月 7 日:AIGC 电影化叙事实战教程,嘉宾为 Joey,是莫奈丽莎工作室主理人、上影全球 AI 电影马拉松大赛最佳叙事奖导演、可灵星芒 AIGC 短剧获奖导演、资深创意广告人。 总奖金池百万元,机会就在眼前,准备好您的创意来瓜分百万奖池。 2. AIGC 电影化叙事实战教程: 第三部分:AIGC 电影化的快速技巧 分镜头脚本制作 GPTs:以 2024 AIGC 营销视频生态创新大赛的冰工厂赛道为例。 生图及生视频提示词制作 GPTs 音乐提示词制作 GPTs:参考 prompt 为请帮我制作一首短剧结尾部分转折的纯音乐背景音乐,内容是孙悟空中了圈套,被带上闪电禁锢,落入陷阱,坠入悬崖失去踪迹,希望风格新颖,带有电影感,时长 30s。参考给到的 prompt:Experimental oriental electronica, Intense suspense, Background music, BPM65, Thunderous crashes, Rapid descending synths。调整歌曲快慢技巧:修改 BPM,值越高节奏越快。 3. 上海国际 AIGC 大赛第三名—《嘉定汇龙》复盘: 由咖菲猫咪和三思完成。三思是中国做 stable diffusion 艺术字的高手,具体教程可在 WaytoAGI 查看。核心是让 AI 根据提供的框架生成对应的艺术形态,根据地名特色产业,找寻或炼制 lora,有的用即梦的通用模型生成。 用一镜到底完成全片内容和思想的浓缩,通过空中俯拍嘉定的古老街景呈现历史厚重感,转向现代都市繁荣景象,以 AI 生成的未来场景结尾。 音乐选择为开头增色,从古风音乐到现代电子乐的转换与画面切换契合。 开场部分结合应用了 comfyui 转绘、steerablemotion、runway 文生视频、图生视频等多种 AI 技术,最后通过合成剪辑拼合。 多人在线工作流:十个人的小组,素未谋面却要完成高度协同工作。
2025-03-11
我想制作AI数字人,如何去寻找相关资料和教程
以下是寻找制作 AI 数字人相关资料和教程的途径: 1. 在线文档和公众号:可以查看。 2. B 站:在 B 站搜索相关视频教程。 3. 具体操作方法: 在剪映中,右侧窗口顶部打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。选择数字人形象时,软件会播放其声音,可判断是否需要,点击右下角“添加数字人”将其添加到当前视频。剪映会根据提供的内容生成对应音视频并添加到轨道中,左下角会提示渲染完成时间,可点击预览查看效果。 为让视频更美观,可增加背景图片。删除先前导入的文本内容,点击左上角“媒体”菜单并“导入”按钮选择本地图片上传,将图片添加到视频轨道上,可通过拖拽轨道右侧竖线使其与视频对齐。 此外,还有一些开源的算法代码仓库可供参考: 1. ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition 2. AI Agent: 大模型包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分可使用 LangChain 的模块去做自定义,包含了 Agent 实现的几个组件 3. TTS: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多分支版本。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌方面。 除了算法,人物建模模型可以通过手动建模实现,但这种简单的构建方式还存在一些问题,如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-03-11
用trae写小程序的使用教程
以下是使用 Trae 写小程序的完整教程: 1. 基础操作 右下角选中“DeepSeekR1”,这是关键的基础步骤。 让 AI 设计小游戏,记得说“用 HTML 来实现”,这样无需额外配置环境,生成的网页小游戏可随时随地打开使用。 AI 完成小游戏后,点击代码框右上角的应用。在存放网页的文件夹中找到并打开即可使用。 2. 功能优化 若想给小游戏增加倒计时系统,告诉 AI 让其修改。若第一次修改有误,把错误告诉它并可尝试切换到 deepseekV3 等其他模型。 对于生成效果不太对的情况,如图片重叠,把结果贴给 AI 并描述错误现象和期望表现,让其迭代修改。 3. 后续步骤 完成功能修改后,可进行保存功能的开发。 调整细节,对于一些复杂问题,可能需要多次与 AI 沟通修改。 另外,公众号回复“字幕图片”,可获取源代码。将其保存成.html 文件,在浏览器打开就能使用。您还可以参考 https://openprocessing.org/ 中的创意,复制代码到 Trae 中用 AI 对话优化。
2025-03-11