以下为您提供关于 RAG 的教程:
首先,有一篇题为“胎教级教程:万字长文带你理解 RAG 全流程”的文章。作者大圣指出这是面向普通人的 RAG 科普,而非技术向文章。文章强调 RAG 技术在当前 AI 发展中的重要性,其衍生产品能为企业和个人带来效率提升,但也存在局限性。作者希望通过阐述 RAG 完整流程,让读者全面认知该技术,管理好预期,在使用相关产品时能充分发挥其潜力。适合包括 AI 爱好者、企业老板、AI 产品经理等人群。
其次,“【AI+知识库】商业化问答场景,让 AI 回复更准确,一篇专为所有‘小白’讲透 RAG 的实例教程(上篇)”中提到,通过一个简单的问答示例展示了有时回答不准确的情况,从而引出 RAG 这一优化回答的专业术语。接着介绍了基础概念,RAG 即检索增强生成,由检索器和生成器组成,适合处理需要广泛知识的任务。
最后,在“胎教级教程:万字长文带你理解 RAG 全流程”中还提到了 RAG 全貌概览。RAG 流程分为离线数据处理和在线检索两个过程,离线数据处理构建知识库,在线检索则是利用知识库和大模型进行查询。以构建智能问答客服为例来了解 RAG 流程中的 What 与 Why 。
大家好,我是大圣,一名致力于在AI时代打造超级个体的软件开发工程师。继Coze的胎教级教程之后,我再次为大家带来RAG(检索增强生成)技术的胎教级别教程。这篇文章不是一篇面向RAG研究者的技术向文章,而是面向普通人的RAG科普。这篇文章一共1.6万字,我为什么要花费大的心力写这篇文章呢?因为在当前AI技术的发展中,工作流和RAG已成为核心应用。RAG不仅是一项真正落地的AI技术,而且其衍生产品不仅服务于企业,更能为个人效率带来显著提升。然而,任何技术都有其局限性。许多人初次接触RAG时兴致勃勃,但实际使用后却失望而归。这并非RAG技术不够强大,而是因为期望过高。因此,我希望通过全面详细地阐述RAG的完整流程,让你对这项技术有更全面的认知。这样,在使用RAG相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力在开始花费你的时间看这篇长文之前,我希望先管理好你的预期这是一篇关于RAG的科普性文章,我会用我一贯的文风(通俗易懂)给小白讲清楚RAG的各个环节严格来讲,这不是一篇技术向文章,为了让更多人可以听懂,我隐去了一些不重要的技术细节和术语本文适合任何人,不包括但不限于:AI爱好者/为企业寻找知识库解决方案的老板/AI产品经理等读完本文,我希望你在使用任何知识库工具的时候,对每一步操作都是清晰的,做到知其然,知其所以然废话不多说,我们开始!
其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。
旁白:一路千辛万苦,终于要真正了解RAG的全貌了,好激动前面的开胃菜已经完毕,这里我们进入正餐,先上一张图注:这张图引用自:https://mp.weixin.qq.com/s/37tKVQbxenVVBAeMZ334aQ公众号:AI花果山一位RAG大佬,正在编写一系列教程《RAG高效应用指南》这张图将会是我们本章的知识地图,看到这么多的概念,不要慌,我们先整体理解下RAG。自顶向下,RAG的流程分为离线数据处理和在线检索两个过程。我们前面讲到,知识库是RAG的“活字典”,可以让AI随时进行查阅。而离线数据处理的目的就是为了构建出这本“活字典”。经过离线数据后,知识则会按照某种格式以及排列方式存储在知识库中,等待被使用。而在线检索则是我们使用利用知识库+大模型进行查询的过程。在学习一门新知识的时候,是什么与为什么同等重要是什么让你知其然为什么让你知其所以然接下来我们就以RAG最经典的应用场景《构建智能问答客服》来了解RAG所有流程中的What与Why