Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是提示词工程?有什么重要作用?普通人学习提示词工程的意义有哪些

Answer

提示词工程是人工智能领域,特别是在自然语言处理和大型语言模型的背景下的一个相对较新的概念。

它涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。其关键点包括精确性、创造性、迭代以及对上下文的理解。

提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。而提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能,以及创造性地探索模型的潜在应用。

例如,通过简单的提示词可以获得大量结果,但结果质量与提供的信息数量和完善度有关。一个提示词可以包含指令、问题、上下文、输入或示例等元素,以更好地指导模型获得更好的结果。像在 OpenAI 的相关模型中,可以使用不同角色来构建 prompt。从示例中可以看出,语言模型能基于给出的上下文内容完成续写,通过改进提示词能获得更好的结果。

对于普通人来说,学习提示词工程具有以下意义:

  1. 能够更好地与 AI 模型进行交互,获得更符合需求的结果。
  2. 有助于提升在文本概括、数学推理、代码生成等各种高级任务中的效率和质量。
  3. 加深对大型语言模型能力和局限性的理解,从而更有效地利用相关技术。

提示工程指南是由 DAIR.AI 发起的项目,旨在帮助研发和行业内相关人员了解提示工程,传播 AI 技术和研究成果。研究人员可利用提示工程提升大语言模型处理复杂任务场景的能力,开发人员可通过其设计、研发强大的工程技术,实现和大语言模型或其他生态工具的高效接轨。提示工程包含了与大语言模型交互和研发的各种技能和技术,在实现和大语言模型交互、对接,以及理解其能力方面都起着重要作用,还能用于提高模型的安全性,借助专业领域知识和外部工具来增强模型能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

基本概念

您可以通过简单的提示词(Prompts)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的_指令_或_问题_等信息,也可以包含其他详细信息,如_上下文_、_输入_或_示例_等。您可以通过这些元素来更好地指导模型,并因此获得更好的结果。看下面一个简单的示例:提示词输出结果如果使用的是OpenAI Playground或者其他任何LLM Playground,则可以提示模型,如以下屏幕截图所示:需要注意的是,当使用OpenAI的gpt-4或者gpt-3.5-turbo等聊天模型时,您可以使用三个不同的角色来构建prompt:system、user和assistant。其中system不是必需的,但有助于设定assistant的整体行为,帮助模型了解用户的需求,并根据这些需求提供相应的响应。上面的示例仅包含一条user消息,您可以使用user消息直接作为prompt。为简单起见,本指南所有示例(除非明确提及)将仅使用user消息来作为gpt-3.5-turbo模型的prompt。上面示例中assistant的消息是模型的响应。您还可以定义assistant消息来传递模型所需行为的示例。您可以在[此处(opens in a new tab)](https://www.promptingguide.ai/models/chatgpt)了解有关使用聊天模型的更多信息。从上面的提示示例中可以看出,语言模型能够基于我们给出的上下文内容`"The sky is"完成续写。而输出的结果可能是出人意料的,或远高于我们的任务要求。但是,我们可以通过改进提示词来获得更好的结果。让我们试着改进以下:提示词输出结果结果是不是要好一些了?本例中,我们告知模型去完善句子,因此输出的结果和我们最初的输入是完全符合的。提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。以上示例基本说明了现阶段的大语言模型能够发挥的功能作用。它们可以用于执行各种高级任务,如文本概括、数学推理、代码生成等。

问:什么是提示工程?与提示词有什么区别?

提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中,一个相对较新的概念。它涉及设计和优化输入提示(prompts),以引导AI模型生成特定类型的输出或执行特定的任务。[heading3]提示工程的关键点包括:[content]1.精确性:通过精确的提示,可以提高AI模型输出的相关性和准确性。2.创造性:提示工程需要创造性地思考如何构建问题或请求,以激发AI模型的特定能力。3.迭代:通常需要多次尝试和调整提示,以获得最佳结果。4.上下文理解:提示需要包含足够的上下文信息,以便AI模型能够理解并执行所需的任务。[heading3]提示词(Prompts):[content]提示词通常指的是直接输入到AI模型中的问题、请求或指示,它们是提示工程的一部分。提示词可以非常简单,如“给我总结这篇文章的主要观点”,或者更复杂,如设计一个包含多个步骤和条件的复杂任务。[heading3]与提示工程的区别:[content]提示词是实际输入到AI系统中的具体文本,用以引导模型的输出。提示工程则是一个更广泛的概念,它不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化AI模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对AI模型的深入分析、用户研究、以及对特定任务的定制化提示设计。内容由AI大模型生成,请仔细甄别。

提示工程指南

提示工程指南(Prompt Engineering Guide)是由[DAIR.AI(opens in a new tab)](https://github.com/dair-ai)发起的项目,旨在帮助研发和行业内相关人员了解提示工程。以传播AI技术和研究成果为目标,DAIR.AI的愿景是赋能新一代AI领域的创新者。本目录内容翻译自:https://www.promptingguide.ai/提示工程(Prompt Engineering)是一门较新的学科,关注提示词开发和优化,帮助用户将大语言模型(Large Language Model,LLM)用于各场景和研究领域。掌握了提示工程相关技能将有助于用户更好地了解大型语言模型的能力和局限性。研究人员可利用提示工程来提升大语言模型处理复杂任务场景的能力,如问答和算术推理能力。开发人员可通过提示工程设计、研发强大的工程技术,实现和大语言模型或其他生态工具的高效接轨。提示工程不仅仅是关于设计和研发提示词。它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要作用。用户可以通过提示工程来提高大语言模型的安全性,也可以赋能大语言模型,比如借助专业领域知识和外部工具来增强大语言模型能力。基于对大语言模型的浓厚兴趣,我们编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。[Prompt-Engineering-Lecture-Elvis.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/HNwJblqwZodlBOxqsXrcCsTDnid?allow_redirect=1)

Others are asking
哪里有提示词的文本
以下是关于提示词的一些文本信息: 胡凯翔在构建提示词的方法中提到,充分描述任务很重要。提供的上下文越详尽,与任务相关性越强,大语言模型给予的反馈下限越高,而提示词的技巧能挖掘其潜力发挥上限,双向奔赴是最优选择。例如,一个用户要求 GPT 删除个人信息的官方示例中,给出了背景、定义术语、给出模型等具体内容。 星流一站式 AI 设计工具中,在 prompt 输入框中可输入提示词,还能使用图生图功能辅助创作。提示词用于描绘画面,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点等;可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 SD 新手入门图文教程中提供了一些提示词相关的模板,如 Majinai、词图、Black Lily 等相关网站。
2025-03-05
可以给我一些AI写小说的提示词示例吗
以下是一些 AI 写小说的提示词示例: 1. 用大模型草拟大纲:包括标题、主旨、世界观、主要角色、小说背景、情节概要等方面。 2. 写小说本身的提示词相对简单,比如通过搜索来提供概念,将搜索结果结构化,以方便大模型理解。 3. 理性决策提示词:例如收集信息、重新定义问题、运用 Mini Max Regret 方法等步骤。 4. 自用和他用的提示词在稳定性、经济性、可维护性等方面有较大区别,工业化提示词需稳定、经济且易维护。 5. 关于写作方式,既需要精心设计也需要直觉创作。 6. 好的文字能引起生理共鸣和情绪,若能引起众多人的共鸣则可能成为公认的佳作。 7. 用 Deepseek 写小说要能引起共鸣和考虑人类共性,文字要感动人。
2025-03-05
ai提示词反推工具
以下是关于 AI 提示词反推工具的相关信息: 在图生图功能中,除了文本提词框外还有图片输入口,可通过图片给 AI 创作灵感。有两种反推提示词的按钮,CLIP 能通过图片反推出完整含义的句子,DeepBooru 可反推出关键词组。但生成的提示词可能存在瑕疵,需要手动补充信息。调整好提示词后,还需注意宽度、高度以及提示词相关性和重绘幅度等参数。 另外,LayerStyle 副本中的 PromptTagger 可根据图片反推提示词并设置替换词,使用 Google Gemini API 作为后端服务,需申请 API key 并正确填写配置文件。PromptEmbellish 输入简单提示词能输出润色后的提示词,也支持输入图片作为参考,同样依赖 Google Gemini API 服务。 同时,为您提供以下提示词相关的资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-03-05
ai提示词反推
在 AI 中,关于提示词反推,以下是一些相关信息: 在图生图功能中,除了文本提词框,还有图片框输入口。通过图片可给与 AI 创作灵感,文本输入框旁有两个反推提示词的按钮,CLIP 能通过图片反推出完整含义的句子,DeepBooru 能反推出关键词组。但两种方式生成的提示词可能存在瑕疵,需要手动补充信息。调整宽度和高度,使红框匹配图片。此外,提示词相关性和重绘幅度这两个参数很重要。 样例驱动的渐进式引导法能充分发挥 AI 自身的逻辑分析和抽象总结能力,从用户提供的样例中总结方法论,用户判断方法论正确与否并提出意见,为提示词爱好者提供低门槛生成途径。但 LLM 有上下文长度限制,在长对话中可能导致 AI 遗忘早期内容,影响输出质量,所以需要引入“提示词递归”的概念与方法,具体步骤包括初始提示、定期总结、重新引入、细化和拓展、验证和优化。
2025-03-05
我需要优化提示词助手
以下是关于优化提示词助手的相关内容: 在使用 Claude2 时,您可以让它对先前给出的答案进行“自我评估”。例如,如果您认为模型可能犯了错误,让它检查自己的工作,在任务中增加额外的审慎步骤,将回应分类为好或坏,或者让它说出更喜欢两个初始回应中的哪一个及原因。您还可以通过“提示链”自动执行类似的“额外审慎”步骤,并在要求它在文本中查找内容时,最好“给它一个出口”,以防止其胡编乱造。 Midjourney 机器人通过将提示分解为更小的单位(称为标记)来分析您的提示,这些标记可以是短语、单词甚至音节。带有不必要的单词、冗长的描述、诗意短语或对机器人的直接寻址的长提示可能会导致在图像中添加意想不到的元素,使用/shorten 命令可以帮助您发现提示中最重要的单词以及可以省略的单词。 XiaoHu.AI 日报中提到,通过链式思维等技术可自动改进提示词,提升 AI 模型回答的质量,具有示例增强、标准化、提示重写、预填充内容等功能特点,能显著提高模型的易读性和准确性。测试显示多标签分类准确率提升 30%,摘要任务可完全遵循字数要求。若提示缺少示例,Claude 还会自动生成合成示例,简化提示构建过程。
2025-03-05
生成图片提示词
以下是关于生成图片提示词的相关内容: 1. 藏师傅教您用 AI 三步制作任意公司的周边图片: 第一步:将生成的提示词填入{图像描述}位置,将您想生成的周边填入{周边描述}部分。例如:“The pair of images highlights a logo and its realworld use for a hitech farming equipment;this logo is applied as a black and white tattoo on lower back of an inmate”。参考此内容和风格特点创作提示词,然后根据{周边描述}设计配套描述,表达“展示同样的内容(可以是角色、标志等)”的意思。 第二步:将第二步的提示词和 Logo 图片放到 Comfyui 工作流,Lora 需要用到 InContext LoRA 中的 visualidentitydesign 从 https://huggingface.co/alivilab/InContextLoRA/tree/main 下载,工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 第三步: 。 2. “城市狂想”直接上手操作的教程中图片提示词生成: 提供了猫叔之前写的一段提示词的 prompt,例如: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 。 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 。 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 。 为大家直接生成了 1 组共 12 段提示词,可直接在悠船和 MJ 中使用,其他平台工具请复制后删除包含以后的部分。 以悠船为例,进入悠船页面,点击开始想象按钮,粘贴提示词,回车等待几十秒生成 4 张图片,可选择喜欢的图片进行变化、高清、重塑、扩图等操作。变化会生成 4 张新图片,高清分为选择直接和选择强烈,重塑分为细微和强烈两种方式。
2025-03-05
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
我是一个AI小白,从事基础建设土木工程行业。请你给我制定一个AI学习计划,特别是相关软件学习,联动。
对于您这样从事基础建设土木工程行业的 AI 小白,以下是为您制定的一个初步的 AI 学习计划: 一、基础知识学习 1. 在线课程:推荐您在 Coursera、EdX 等平台上搜索关于人工智能基础的课程,了解 AI 的基本概念、发展历程和应用领域。 2. 书籍阅读:可以阅读《人工智能:一种现代方法》《机器学习》等入门书籍,建立对 AI 的理论框架认识。 二、相关软件学习 1. Python 编程语言:这是 AI 开发中常用的语言。您可以通过在线教程(如菜鸟教程、廖雪峰的 Python 教程)学习 Python 的基础语法和数据结构。 2. TensorFlow 和 PyTorch:这是两个主流的深度学习框架。您可以从它们的官方文档入手,学习如何搭建和训练简单的神经网络模型。 三、实践项目 1. 尝试使用 Python 实现一些简单的机器学习算法,如线性回归、决策树等。 2. 参与开源项目或者在 Kaggle 等平台上参加竞赛,积累实践经验。 四、与土木工程行业结合 1. 研究如何将 AI 技术应用于土木工程中的结构分析、材料性能预测等方面。 2. 关注土木工程领域中使用 AI 的最新案例和研究成果。 学习 AI 是一个长期的过程,需要您保持耐心和持续的学习热情。祝您学习顺利!
2025-03-04
微软认证AI工程师
以下是关于微软认证 AI 工程师的相关信息: MQ 老师是知乎的 AI 讲师,考过了国家工信部、微软、讯飞三个初级人工智能工程师证书,在教育行业工作 15 年以上,过去半年一直在探索教育场景中的 AI 实践。 胡凯翔是微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册。 韦恩是微软提示词工程师,智能体创业者,WayToAGI 共建者,多平台 Agent 开发者,企业级 AI Agent 定制专家,荣获多家 AI 开发平台的比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问。
2025-03-02
我是一个普通本科的大二学生,学的是软件工程专业,但是我本身编程能力不是很好,我对ai拥有浓厚的兴趣,喜欢去学习并运用ai,我想未来all in ai并成为一个产品经理,我想给你分享一下我的计划,我想今年下半年考过英语四级,并且参加苹果26年的swift 学生挑战赛,我是零基础但是我愿意学习,希望你帮我制定一个包含实施策略、里程碑和最佳实践的详细框架,以帮助我有效地实现这些目标!
以下是为您制定的包含实施策略、里程碑和最佳实践的详细框架,以帮助您有效地实现目标: 一、英语四级考试 实施策略: 1. 制定学习计划,每天安排一定时间学习英语,包括词汇、语法、听力、阅读和写作。 2. 多做历年真题,熟悉考试题型和难度。 3. 参加英语学习社群或找学习伙伴,互相监督和鼓励。 里程碑: 1. 每月进行一次模拟考试,评估学习进度。 2. 两个月内完成词汇和语法的系统学习。 最佳实践: 1. 利用碎片时间背单词,如在公交车上、课间等。 2. 听力练习时,反复听同一篇材料,直到完全听懂。 3. 写作练习后请老师或同学帮忙批改,总结错误和不足。 二、参加苹果 26 年的 Swift 学生挑战赛 实施策略: 1. 从零基础开始学习 Swift 编程语言,通过在线课程、书籍等资源进行系统学习。 2. 参与相关的编程实践项目,提升实际操作能力。 3. 关注苹果官方网站和社区,了解挑战赛的最新动态和要求。 里程碑: 1. 三个月内掌握 Swift 编程语言的基础知识。 2. 半年内完成一个小型的 Swift 项目开发。 最佳实践: 1. 遇到问题及时在技术论坛或社区寻求帮助。 2. 定期回顾和总结所学知识,加深理解和记忆。 3. 参考优秀的 Swift 项目案例,学习他人的编程思路和技巧。 三、成为 AI 产品经理 实施策略: 1. 学习 AI 相关的基础知识,包括机器学习、深度学习等。 2. 了解产品经理的职责和工作流程,通过实践项目积累经验。 3. 关注行业动态,参加相关的研讨会和培训课程。 里程碑: 1. 一年内掌握 AI 基础知识和产品经理的基本技能。 2. 参与实际的 AI 项目开发,担任产品经理助理角色。 最佳实践: 1. 多与行业内的专业人士交流,获取经验和建议。 2. 不断提升自己的沟通和协调能力,以更好地推动项目进展。 3. 学会从用户需求出发,设计具有创新性和实用性的 AI 产品。 希望以上框架对您有所帮助,祝您顺利实现目标!
2025-03-01
文章风格提示词逆向工程
文章风格提示词逆向工程是指通过分析和检查现有文章,了解其设计和创作方式,从而生成更优提示词的过程。 利用 ChatGPT 进行逆向工程的步骤包括: 1. 利用 ChatGPT 对指定文章进行改写。 2. 对改写后的版本进行原创性检验。 3. 根据检验结果,指导 ChatGPT 进行进一步优化。 4. 重复上述过程,直至满足高度原创的标准。 5. 采用逆向工程的方法,梳理 ChatGPT 的改写策略。 6. 整合这些策略,形成一套提高文章原创性的高效提示词。 在进行逆向提示词工程时,需要注意以下几点: 1. 检测原创度的大多是机器,不能仅凭肉眼判断改写效果。 2. 对相同提示词多次改写或从元提示词中挑选部分深入改写,可有效提升文章质量。 3. 逆向提示词要提炼文章的语气、写作风格、用词、句式等各种写作要素,包括修辞手法、文章布局、论点和证据、段落长度和句子节奏等多个维度。 4. 不同领域的逆向分析需要相应的专业知识,如文学作品和编程领域。 这种逆向工程方法在营销、商业分析、心理学等领域均适用,能够在智能写作等领域持续产生可商用的提示词。但也需注意,掌握逆向分析技术可能导致一些 AI 创业公司被替代。
2025-02-25
有可以用于建设工程工程量计算的AI软件吗
目前在建设工程工程量计算方面,有一些专门的 AI 软件可供使用。例如广联达 BIM 安装计量 GQI2021,它能够利用 AI 技术提高工程量计算的效率和准确性。此外,鲁班算量软件也在一定程度上应用了 AI 算法来辅助工程量的计算。不过,具体选择哪种软件还需根据您的具体需求和项目特点来决定。
2025-02-24
学习ai对普通人的生活有什么意义
学习 AI 对普通人的生活具有多方面的重要意义: 1. 提供更高效的个人助理服务:人工智能模型将很快能作为自主的个人助理,代表您执行特定任务,如帮助协调医疗护理。 2. 促进教育方式的变革:人工智能工具在教育领域有创新的应用空间,如通过交流互动辅助学习,但需要正确引导使用,避免过度依赖。 3. 助力艺术创作:在艺术领域,人们可以与计算机合作作画,发挥自身的创造力。 4. 提高工作效率:普通人可以通过合适的软件和学习内容,运用 AI 来提升工作效率。 5. 带来科技便利与幸福:AI 是未来的必然方向,简单试用能让普通人更快受益,使生活因科技而更加便利和幸福。 然而,在推广 AI 的过程中也面临一些挑战,如需要降低计算成本以使其更加普及,避免其成为有限资源导致战争或成为富人的工具。同时,要正确引导使用,避免其带来负面影响。
2025-03-05
普通人如何学AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,想要学习或了解 AI,好的信息源如「即刻」App 的“”等免费圈子。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 如果您还在观望 AI,不知道从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习资源都是免费开源的。
2025-03-05
普通人 怎么利用ai赚钱
以下是一些普通人利用 AI 赚钱的方式: 1. 电商:婴儿的四维彩超 AI 预测 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出现实模样进行变现。孕妇妈妈在孕期 22 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝模样,从而衍生出市场需求。在小红书、抖音等公域平台发布相关笔记吸引咨询。 操作流程:客户提供四维彩超图原图,在 Midjourney 里进行垫图和特定描述词,整个流程不超 10 分钟出图。 变现方式:在抖音、快手、视频号、小红书上批量发布相关视频或图文,将客户引到私域接单变现。但要注意平台引流需隐蔽,避免被检测限流或封号。 2. AI 产业中的应用层 基础设施层:布局投入确定性强,但资金和资源门槛高,普通人若无强资源应谨慎入局,可考虑“合作生态”切入机会。 技术层:技术迭代快,小规模团队或个人需慎重考虑技术迭代风险,基础通用大模型不建议普通个体和小团队考虑。 应用层:是时代赋予的广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,对于普通个体和小团队有超级机会和巨大发展空间。
2025-03-04
适合普通人(没有ai开发经验) 的ai发展方向有哪些
对于没有 AI 开发经验的普通人,以下是一些适合的 AI 发展方向: 1. 基础知识学习: 了解 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其之间的关系。 回顾 AI 的发展历程和重要里程碑。 掌握数学基础,如统计学(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 2. 算法和模型: 熟悉监督学习(如线性回归、决策树、支持向量机)。 了解无监督学习(如聚类、降维)。 知晓强化学习的基本概念。 3. 评估和调优: 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 掌握模型调优的方法,如使用网格搜索等技术优化模型参数。 4. 神经网络基础: 理解神经网络的基本结构,包括前馈网络、卷积神经网络、循环神经网络。 熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 巩固数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 涉足自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等领域。 5. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 6. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,包括项目实战、案例分析等。 此外,无论您是技术爱好者还是内容创作者,都可以: 技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,尝试使用 AI 辅助编码。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor 等。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块。 4. 构建 AI 驱动的项目,如开发聊天机器人或图像识别应用。 内容创作者: 1. 利用 AI 辅助头脑风暴,获取创意方向。 2. 建立 AI 写作流程,从生成大纲到扩展段落等。 3. 探索多语言内容,借助 AI 辅助翻译和本地化。 4. 用 AI 工具优化 SEO,调整标题、元描述和关键词使用。
2025-03-02
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
那普通人要研发机器狗从哪方面开始学习?
对于普通人想要研发机器狗,以下这些 AI 相关的基础知识是很有帮助的: 1. 了解 AI 的概念:AI 即人工智能,是让计算机模拟人类智能的技术。 2. 掌握机器学习:这是电脑找规律学习的方式,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:处理没有标签的数据,让算法自主发现规律,例如聚类任务,像将一堆新闻文章按主题或内容特征分组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:这是一种参照人脑构建神经网络和神经元的方法,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 4. 熟悉生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. 了解 LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解,像上下文理解、情感分析、文本分类等,但不太擅长文本生成。 6. 关注技术里程碑:例如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 这些基础知识能为您研发机器狗提供理论支持和技术思路。
2025-02-26
如何开始学习AI
以下是关于如何开始学习 AI 的建议: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(机器学习、深度学习等)以及在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 此外,还有二师兄的 AI 学习经历供您参考: 二师兄在 2024 年 2 月过年后,在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出 AI 学习的第一步。3 月啃完 SD 的所有教程并开始炼丹。4 月与小伙伴探讨 AI 变现的途径,尝试用 GPT 和 SD 制作图文故事绘本、小说推文的项目。5 月因工作变动开启了无硬件支持的 AI 学习之路,加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-03-06
初步学习AI应该先学什么内容
初步学习 AI 可以从以下几个方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的人,若希望继续精进 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 中学生学习 AI 可以参考以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-03-06
如何学习利用通往AGI之路
以下是关于学习利用通往 AGI 之路的相关内容: 关于 AE 软件: 基本功能:可通过图层软件抠元素加插件做特效,如利用 auto field 自动填充工具,轨道遮罩功能让图层按特定形状变化等。 与 AI 结合运用:如用 runway 生成烟花爆炸素材,结合 AE 的图层混合模式、遮罩等功能实现特效可控的画面。 其他应用:用内容识别填充功能处理视频画面,如抹掉入镜的人;从素材网站获取粒子素材为画面添加氛围感。 学习路径:可在 B 站找丰富的 AE 软件入门课程自学,也可从包图网下载工程文件学习。 学习方法:通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习 AE,还可参考模板。 与 AI 的关系:AI 出现后,AE 使用减少,有些动效可用 AI 完成。 在短剧中的应用:在火焰、文字、光线等方面有少量应用。 关于 AI 知识库: 使用情况、AIPO 活动的发起背景、内容安排及相关资源等。 线下活动的规则和玩法,以及 AI 在科技发展中的重要地位和相关研究方向。 way to AGI 社区活动的安排、材料准备以及知识库的使用和相关内容更新等情况。 相关名词解释:包括 AGI、AIGC、agent、prompt 等,建议通过与 AI 对话或李继刚老师的课程来理解。 信息来源:有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 社区共创项目:如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径:有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 经典必读文章:如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。 学习路径推荐: 应用:深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天都用它,并使用它们来解决实际问题或提升效率。 分析:大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。
2025-03-05
请给我推荐一些AI写小说相关的文档和学习资料
以下是为您推荐的一些 AI 写小说相关的文档和学习资料: 1. 《🐋全新 AI 整活计划:DeepSeek 小说家 2025 年 2 月 9 日》 介绍了关于提示词编写及 AI 应用的探讨,包括理性决策提示词的编写方法、示例的价值、自用与他用提示词的区别、改进指令遵循、AI 应用于软件开发等方面。 还分享了关于写作方式、好文字的定义、模型特点与推荐等内容。 2. 《陈财猫:如何用 AI 写出比人更好的文字?》 提到了两个技巧,一是“显式归纳与列出你想要的文本特征”,二是“通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本”。 3. 《Stuart:教你用 coze 写起点爆款小说《夜无疆》,做到高中生文笔水平》 介绍了一个能写出至少高中水平小说的 coze 工作流,包括用 bing 搜索相关内容、将搜索结果结构化、用大模型草拟大纲、写文章等核心节点。
2025-03-05
我想要知识库里的ai系统学习文档,要怎么获取
您可以通过以下方式获取 AI 系统学习文档: 1. 观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等,并整理成学习笔记,在整理过程中学习更多知识,还能与大家交流互动。 2. 等待社区共创内容,通过共创做小项目来反向推动学习。 3. 原子将分享 30 分钟快速体验 AI 工具并教爸妈理解相关内容。 4. 学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 5. 查看如介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章。 6. 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 7. 查看历史脉络类资料,如整理了 open AI 的发展时间线和万字长文回顾等。 相关内容的获取链接为:https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2727000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2806000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2942000 。
2025-03-05
我想要系统学习AI,请问文档在哪里?
以下是一些可供您系统学习 AI 的资源: 1. 通往 AGI 之路知识库: 其中包含关于 AI 知识库使用及 AIPO 活动的介绍,包括使用情况、发起背景、内容安排及相关资源等。 有 AIPO 线下活动及 AI 相关探讨,涉及活动规则、玩法以及 AI 在科技发展中的地位和研究方向。 介绍了 way to AGI 社区活动与知识库,包括活动安排、材料准备、知识库使用和内容更新情况。 提供了关于 AI 知识库及学习路径的介绍。 包含 AI 相关名词解释,如 AGI、AIGC、agent、prompt 等,建议通过与 AI 对话或李继刚老师的课程来理解。 说明了知识库的信息来源,如赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐订阅获取最新信息并投稿。 介绍了社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 提供了学习路径,如李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 为初学者入门推荐了 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 整理了 open AI 的发展时间线和万字长文回顾等历史脉络类资料。 2. 通往 AGI 之路的相关平台: 网站: 公众号:通往 AGI 之路 B 站: 小红书: X(Twitter): 内置知识库 AI 助手 此外,还有【法律法规】《人工智能法案》2023.06.pdf_TEXTS ADOPTED 中的相关内容,但此部分主要涉及法规方面。
2025-03-05