基于大模型的 RAG 应用开发与优化具有以下特点:
优势:
应用场景:
调优实践:
LangChain和RAG的结合可以带来以下的优势:灵活性:你可以根据你的需求和数据源选择不同的组件和参数,定制你的RAG应用。你也可以使用自定义的组件,只要它们遵循LangChain的接口规范。可扩展性:你可以使用LangChain的云服务来部署和运行你的RAG应用,无需担心资源和性能的限制。你也可以使用LangChain的分布式计算功能来加速你的RAG应用,利用多个节点的并行处理能力。可视化:你可以使用LangSmith()来可视化你的RAG应用的工作流程,查看每个步骤的输入和输出,以及每个组件的性能和状态。你也可以使用LangSmith来调试和优化你的RAG应用,发现和解决潜在的问题和瓶颈。LangChain和RAG的结合可以应用于多种场景,例如:专业问答(Professional Question Answering):你可以使用LangChain和RAG来构建一个专业领域的问答应用,例如医疗、法律或金融。你可以从专业领域的数据源中检索相关的信息,帮助大模型回答用户的问题。例如,你可以从医学文献中检索疾病的诊断和治疗方案,帮助大模型回答医疗相关的问题。文本摘要(Text Summarization):你可以使用LangChain和RAG来构建一个文本摘要应用,例如新闻摘要或论文摘要。你可以从多个数据源中检索相关的文本,帮助大模型生成一个综合的摘要。例如,你可以从多个新闻网站中检索关于同一事件的报道,帮助大模型生成一个全面的摘要。文本生成(Text Generation):你可以使用LangChain和RAG来构建一个文本生成应用,例如诗歌生成或故事生成。你可以从不同的数据源中检索灵感,帮助大模型生成更有趣和更有创意的文本。例如,你可以从诗歌、歌词或小说中检索相关的文本,帮助大模型生成一首诗、一首歌或一个故事。
LangChain和RAG的结合可以带来以下的优势:灵活性:你可以根据你的需求和数据源选择不同的组件和参数,定制你的RAG应用。你也可以使用自定义的组件,只要它们遵循LangChain的接口规范。可扩展性:你可以使用LangChain的云服务来部署和运行你的RAG应用,无需担心资源和性能的限制。你也可以使用LangChain的分布式计算功能来加速你的RAG应用,利用多个节点的并行处理能力。可视化:你可以使用LangSmith来可视化你的RAG应用的工作流程,查看每个步骤的输入和输出,以及每个组件的性能和状态。你也可以使用LangSmith来调试和优化你的RAG应用,发现和解决潜在的问题和瓶颈。LangChain和RAG的结合可以应用于多种场景,例如:专业问答(Professional Question Answering):你可以使用LangChain和RAG来构建一个专业领域的问答应用,例如医疗、法律或金融。你可以从专业领域的数据源中检索相关的信息,帮助大模型回答用户的问题。例如,你可以从医学文献中检索疾病的诊断和治疗方案,帮助大模型回答医疗相关的问题。文本摘要(Text Summarization):你可以使用LangChain和RAG来构建一个文本摘要应用,例如新闻摘要或论文摘要。你可以从多个数据源中检索相关的文本,帮助大模型生成一个综合的摘要。例如,你可以从多个新闻网站中检索关于同一事件的报道,帮助大模型生成一个全面的摘要。文本生成(Text Generation):你可以使用LangChain和RAG来构建一个文本生成应用,例如诗歌生成或故事生成。你可以从不同的数据源中检索灵感,帮助大模型生成更有趣和更有创意的文本。例如,你可以从诗歌、歌词或小说中检索相关的文本,帮助大模型生成一首诗、一首歌或一个故事。
开发:产品视角的大模型RAG应用[heading1]调优实践[content]基于以上的分析,我们先选取了实现成本最小的方式进行调优,结果如下:1、更换大模型:从ChatGLM2-6B替换成baichuan2-13b,发现针对我们的场景,后者的性能可以提升一倍左右。2、更换embedding模型:将embedding模型从LangChain Chatchat默认的m3e-base替换为bge-large-zh,发现后者优于前者3、测试不同Top k的值:比较Top 5、Top 10、Top 15的结果,发现Top 10时效果最优。4、对文档名称进行处理:由于原来的政策文件,在导出时文件名会进行简化,如too_long_发展行动方案。因此,人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,发现重命名文件对结果的提升效果不明显,但勾选【开启中文标题加强】选项后,回答的无关信息减少,效果有所提升。目前来看,尽管效果有所提升,但仍未达到可用水平,后续我们也将尝试其他的调优策略。