直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

基于大模型的RAG应用开发与优化

回答

基于大模型的 RAG 应用开发与优化具有以下特点:

优势

  1. 灵活性:可根据需求和数据源选择不同组件和参数,还能使用自定义组件,只要遵循 LangChain 的接口规范。
  2. 可扩展性:能利用 LangChain 的云服务部署和运行应用,无需担心资源和性能限制,也能使用分布式计算功能加速应用。
  3. 可视化:通过 LangSmith 可视化工作流程,查看输入输出及组件性能状态,还能用于调试和优化,发现解决问题和瓶颈。

应用场景

  1. 专业问答:构建医疗、法律或金融等专业领域的问答应用,从专业数据源检索信息帮助大模型回答问题。
  2. 文本摘要:构建新闻或论文等的摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要。
  3. 文本生成:构建诗歌、故事等生成应用,从不同数据源检索灵感帮助大模型生成更有趣和创意的文本。

调优实践

  1. 更换大模型:从 ChatGLM2-6B 替换成 baichuan2-13b,针对特定场景,后者性能提升一倍左右。
  2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3e-base 替换为 bge-large-zh,后者更优。
  3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。
  4. 对文档名称进行处理:人工重命名文件对结果提升不明显,但勾选【开启中文标题加强】选项后,回答的无关信息减少,效果有所提升。目前效果虽有提升,但仍未达到可用水平,后续将尝试其他调优策略。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

开发:LangChain应用开发指南-大模型的知识外挂RAG

LangChain和RAG的结合可以带来以下的优势:灵活性:你可以根据你的需求和数据源选择不同的组件和参数,定制你的RAG应用。你也可以使用自定义的组件,只要它们遵循LangChain的接口规范。可扩展性:你可以使用LangChain的云服务来部署和运行你的RAG应用,无需担心资源和性能的限制。你也可以使用LangChain的分布式计算功能来加速你的RAG应用,利用多个节点的并行处理能力。可视化:你可以使用LangSmith()来可视化你的RAG应用的工作流程,查看每个步骤的输入和输出,以及每个组件的性能和状态。你也可以使用LangSmith来调试和优化你的RAG应用,发现和解决潜在的问题和瓶颈。LangChain和RAG的结合可以应用于多种场景,例如:专业问答(Professional Question Answering):你可以使用LangChain和RAG来构建一个专业领域的问答应用,例如医疗、法律或金融。你可以从专业领域的数据源中检索相关的信息,帮助大模型回答用户的问题。例如,你可以从医学文献中检索疾病的诊断和治疗方案,帮助大模型回答医疗相关的问题。文本摘要(Text Summarization):你可以使用LangChain和RAG来构建一个文本摘要应用,例如新闻摘要或论文摘要。你可以从多个数据源中检索相关的文本,帮助大模型生成一个综合的摘要。例如,你可以从多个新闻网站中检索关于同一事件的报道,帮助大模型生成一个全面的摘要。文本生成(Text Generation):你可以使用LangChain和RAG来构建一个文本生成应用,例如诗歌生成或故事生成。你可以从不同的数据源中检索灵感,帮助大模型生成更有趣和更有创意的文本。例如,你可以从诗歌、歌词或小说中检索相关的文本,帮助大模型生成一首诗、一首歌或一个故事。

开发:LangChain应用开发指南-大模型的知识外挂RAG

LangChain和RAG的结合可以带来以下的优势:灵活性:你可以根据你的需求和数据源选择不同的组件和参数,定制你的RAG应用。你也可以使用自定义的组件,只要它们遵循LangChain的接口规范。可扩展性:你可以使用LangChain的云服务来部署和运行你的RAG应用,无需担心资源和性能的限制。你也可以使用LangChain的分布式计算功能来加速你的RAG应用,利用多个节点的并行处理能力。可视化:你可以使用LangSmith来可视化你的RAG应用的工作流程,查看每个步骤的输入和输出,以及每个组件的性能和状态。你也可以使用LangSmith来调试和优化你的RAG应用,发现和解决潜在的问题和瓶颈。LangChain和RAG的结合可以应用于多种场景,例如:专业问答(Professional Question Answering):你可以使用LangChain和RAG来构建一个专业领域的问答应用,例如医疗、法律或金融。你可以从专业领域的数据源中检索相关的信息,帮助大模型回答用户的问题。例如,你可以从医学文献中检索疾病的诊断和治疗方案,帮助大模型回答医疗相关的问题。文本摘要(Text Summarization):你可以使用LangChain和RAG来构建一个文本摘要应用,例如新闻摘要或论文摘要。你可以从多个数据源中检索相关的文本,帮助大模型生成一个综合的摘要。例如,你可以从多个新闻网站中检索关于同一事件的报道,帮助大模型生成一个全面的摘要。文本生成(Text Generation):你可以使用LangChain和RAG来构建一个文本生成应用,例如诗歌生成或故事生成。你可以从不同的数据源中检索灵感,帮助大模型生成更有趣和更有创意的文本。例如,你可以从诗歌、歌词或小说中检索相关的文本,帮助大模型生成一首诗、一首歌或一个故事。

开发:产品视角的大模型 RAG 应用

开发:产品视角的大模型RAG应用[heading1]调优实践[content]基于以上的分析,我们先选取了实现成本最小的方式进行调优,结果如下:1、更换大模型:从ChatGLM2-6B替换成baichuan2-13b,发现针对我们的场景,后者的性能可以提升一倍左右。2、更换embedding模型:将embedding模型从LangChain Chatchat默认的m3e-base替换为bge-large-zh,发现后者优于前者3、测试不同Top k的值:比较Top 5、Top 10、Top 15的结果,发现Top 10时效果最优。4、对文档名称进行处理:由于原来的政策文件,在导出时文件名会进行简化,如too_long_发展行动方案。因此,人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,发现重命名文件对结果的提升效果不明显,但勾选【开启中文标题加强】选项后,回答的无关信息减少,效果有所提升。目前来看,尽管效果有所提升,但仍未达到可用水平,后续我们也将尝试其他的调优策略。

其他人在问
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景如知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-03
问题定义优化助手
以下是关于问题定义优化助手的相关内容: 市面上有很多 Prompt 框架,框架可理解为从不同角度为思考问题提供解决方案的路径。一个问题的解决通常包括问题背景(所需角色、具备的能力和资源)、问题目标(期望的输出结果和验收标准,如提供商务谈判的完整过程)、提供的资料信息、限制条件(如预算限制等)、角色技能(为目标服务所需调动的技能,如熟悉某个领域的商业案例)和工作流(解决问题时需完成的任务步骤,如信息收集、谈判策略设定等)。细致的内容可能得到更好的结果,但也可能限制可能性,这是一个平衡和折中的结果。 效果呈现方面,体验地址为 。 3 月 5 日作业要求大家看完小七姐的 5 篇入门指南并动手实践,写出自己的一条 prompt 及对话分享出来,提交格式为创作思路和目标|prompt 展示|输出结果。例如无上的目标是让大模型对自己的提问内容进行优化,其思路包括询问大模型“更好的提问”方法论、让 kimi 分析并优化等步骤。 在从 AI 助教到智慧学伴的应用探索中,提到了在不同学段和学科的应用场景,以及向 AI 大模型提问的问题设计,还涉及教育提示词优化助手。
2025-04-11
AI如何优化库存管理、员工排班
以下是关于 AI 优化库存管理和员工排班的相关内容: 库存管理: 1. 利用 AI 预测需求,优化库存管理,减少积压和缺货情况。 2. AI 可以分析不同产品的销售速度、市场趋势等数据,为库存的补货和调整提供决策依据。 3. 通过 AI 生成的库存周转分析工具,预测滞销品并推荐促销策略。 员工排班: 1. 智能排班优化,根据客流预测自动调整员工排班表。 2. 实时话术提示工具,在员工与客户沟通时 AI 推荐应答策略。 3. 自动化周报生成,汇总销售数据、客户反馈生成可视化报告,为排班提供参考。 4. 培训模拟考试系统,基于产品知识库生成随机测试题,提升员工能力,优化排班安排。 5. 客户潜力评分系统,根据消费行为自动标记高价值客户,据此安排合适的员工服务。 6. 舆情预警系统,实时监测负面评价并推送处理建议,灵活调整员工工作安排。 7. 客户流失预测模型,通过行为数据预警流失风险,合理安排员工进行客户维护。 8. 会议纪要自动生成,转录会议录音并提取任务清单,辅助排班决策。 9. 员工满意度分析,通过匿名问卷分析员工工作痛点,优化排班以提高员工满意度。
2025-04-09
提示词优化工具
以下是关于提示词优化工具的相关信息: /shorten 命令: 分析提示:最短的提示,Option 5:tower of donuts, sprinkles 产生了最接近原始目标的图像。 分析结果:许多填充词,如“异想天开”“令人着迷”和“杰作”可以省略。了解“塔”和“魔法”被认为是重要的标记有助于解释为什么一些图像是用童话城堡元素生成的。了解这一点提供了一条线索:如果目标是制作一堆美味的甜甜圈,则应该从提示中删除“神奇”。 特点:该/shorten 命令是一个工具,可帮助您探索 Midjourney Bot 如何解释标记并尝试单词,但它可能不适用于所有主题和提示风格。 星流一站式 AI 设计工具: 下方 prompt 输入框: 可以输入提示词、使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘画面,支持中英文输入。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发)。 如何写好提示词: 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。对已有的提示词权重进行编辑。 辅助功能: 翻译功能:一键将提示词翻译成英文。 删除所有提示词:清空提示词框。 会员加速:加速图像生图速度,提升效率。 提示词优化:启用提示词优化后,帮您扩展提示词,更生动地描述画面内容。 预设词组:小白用户可以点击提示词上方官方预设词组,进行生图。
2025-04-08
全能写作优化指令
以下是为您提供的关于全能写作优化指令的相关内容: 拘灵遣将: 对文章中案例进行脱敏,替换人物姓名、时间和地点。 深化写作时,每次对话输出文章一个部分,各部分字数有具体要求,组合成可直接发布、吸引目标群体、高质量实用的公众号普法文章。 敕代表告诫,划定灵机工作边界、禁忌事项和具体要求。 令:初始化时用中文与用户对话并欢迎;牢记符与敕要求,除非用户明确调整,否则一直遵守;先请求用户提供案例洞察报告和目标群体,用户提供并输入“依律奉行”后,先输出纲要和写作方案。 集合 Deepseek 提示词方法论: 进阶控制技巧: 思维链引导:分步标记法,苏格拉底式追问。 知识库调用:领域限定指令、文献引用模式。 高级调试策略: 模糊指令优化:包括宽泛需求添加维度约束、主观表述量化标准。 迭代优化法:首轮生成获取基础内容、特征强化、风格调整、最终校验。 报告:GPT4 通用人工智能的火花 编程: 编写深度学习代码需掌握数学、统计学知识及熟悉相关框架和库。要求 GPT4 和 ChatGPT 编写自定义优化器模块,GPT4 响应在很大程度上与指令匹配,但忘记部分指令,ChatGPT 在应用动量时犯致命错误。
2025-04-08
需要优化工作规程文件,使用什么AI工具比较好
以下是一些可用于优化工作规程文件的 AI 工具及相关建议: 业务流程优化方面: 流程挖掘软件是一种常用的 AI 工具,它可以自动分析业务流程,并识别改进点。您需要先利用该工具分析当前的业务流程,收集关于业务流程的数据,如任务执行时间、顺序、参与者等,然后对收集到的数据进行分析,自动识别流程中的瓶颈、重复步骤或效率低下的环节。基于分析结果重新设计和优化流程,并将新设计的流程实施到日常业务中,持续监控其表现,根据实施结果和员工反馈进一步调整和优化流程。 文章润色方面: 以下是一些常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。 创建工作流文件方面: 可以使用 Cursor 和 MCP 来创建工作流文件。首先创建一个名为 workflow.md 的文件,写入明确的指令,避免模糊表达,任务越细分越好。然后在对话窗口中告诉 AI 各个文件的对应关系。在使用过程中,Cursor 会请求您允许使用 MCP,记得点“同意”,经过多轮同意后,它会开始执行生成页面。需要注意的是,必须要用 claude sonnet 3.7,3.5 版本实测不行。
2025-04-01
AI 优化简历
以下是一些可以用于优化简历的 AI 工具: 1. ResumeMatcher:这是一个 AI 驱动的开源简历优化工具。它能提供智能关键词匹配、深入分析见解,提升简历通过 ATS 筛选的几率。采用 FastEmbed 计算简历与职位匹配度,结合 textacy 提取核心术语,精准优化简历内容。链接: 2. 超级简历优化助手:帮助用户优化简历提高求职成功率。超级简历优化助手分析简历内容并提供优化建议。 3. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并在整个文档中保持一致的语调。 4. Rezi:是一个受到超过 200 万用户信任的领先 AI 简历构建平台。使用先进的 AI 技术自动化创建可雇佣简历的每个方面——写作、编辑、格式化和优化。 5. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合您的工具。
2025-03-30
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13