Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

FLUX低显存怎么安装

Answer

如果您的显存较低,安装 FLUX 可以参考以下步骤:

  1. NF4 模型下载:
    • 链接:https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors
    • 放置位置:ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中)
    • NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git
  2. GGUF 模型下载:
    • 链接:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1-dev-gguf/tree/main
    • GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUI-GGUF
    • 值得一提的是在最新版本的 ComfyUI 中,GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。
  3. 对于 8G 以下显存的方案:
    • flux1-dev-bnb-nf4.safetensors 放入 ComfyUI\models\checkpoints 文件夹内。
    • ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
    • 注:如果报错,请更新 BitsandBytes 库。下载放入解压后 ComfyUI\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。

相关资源链接:

  • BitsandBytes Guidelines and Flux:https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981
  • ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
  • flux1-dev-bnb-nf4.safetensors:https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors

注意使用精度优化的低配模型的话,工作流和原版是不一样的。自己改的话就是把上面官方的这个 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。相关生态发展很快,有 Lora、Controlnet、IP-adpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。

Content generated by AI large model, please carefully verify (powered by aily)

References

工具教程:Flux

开源社区迅速展开了对低配置方案的优化,NF4来自我们controlnet的作者,GGUF则包含多个版本可以使用[heading4]NF4模型下载[content]https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors放置在ComfyUI/models/checkpoint/中(不像其他Flux模型那样放置在UNET中)NF4配套节点插件git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git[heading4]GGUF模型下载[content]Flux GGUF模型:https://huggingface.co/city96/FLUX.1-dev-gguf/tree/mainGGUF配套节点插件GGUF节点包:https://github.com/city96/ComfyUI-GGUF以下是使用GGUF生图:值得一提的是在最新版本的comfyUI中GGUF的节点插件是可以在Manager管理器中搜到下载安装的,NF4的配套节点插件则搜不到。注意使用精度优化的低配模型的话,工作流和原版是不一样的。此处没有专门列举。[workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/NUMabE5CcoxYVTxoSQAcpCslnWd?allow_redirect=1)自己改的话就是把上面官方的这个fp8的工作流,只需把底模的节点换成NF4的或者GUFF的即可。相关生态发展很快,有Lora、Controlnet、IP-adpter相关生态建设非常速度,以及字节最近发布的Flux Hyper lora是为了8步快速生图。下节我们先讲讲Flux的lora训练。

工具教程:Flux

开源社区迅速展开了对低配置方案的优化,NF4来自我们controlnet的作者,GGUF则包含多个版本可以使用[heading4]NF4模型下载[content]https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors放置在ComfyUI/models/checkpoint/中(不像其他Flux模型那样放置在UNET中)NF4配套节点插件git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git[heading4]GGUF模型下载[content]Flux GGUF模型:https://huggingface.co/city96/FLUX.1-dev-gguf/tree/mainGGUF配套节点插件GGUF节点包:https://github.com/city96/ComfyUI-GGUF以下是使用GGUF生图:值得一提的是在最新版本的comfyUI中GGUF的节点插件是可以在Manager管理器中搜到下载安装的,NF4的配套节点插件则搜不到。注意使用精度优化的低配模型的话,工作流和原版是不一样的。此处没有专门列举。[workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/NUMabE5CcoxYVTxoSQAcpCslnWd?allow_redirect=1)自己改的话就是把上面官方的这个fp8的工作流,只需把底模的节点换成NF4的或者GUFF的即可。相关生态发展很快,有Lora、Controlnet、IP-adpter相关生态建设非常速度,以及字节最近发布的Flux Hyper lora是为了8步快速生图。下节我们先讲讲Flux的lora训练。

第十五期 生图新王FLUX.1

flux1-dev-bnb-nf4.safetensors放入ComfyUI\models\checkpoints文件夹内https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensorsComfyUI_c_NF4节点https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4注:如果报错,请更新BitsandBytes库下载放入解压后ComfyUI\custom_node文件夹内重启ComfyUI,如果之前没更新,更新后再重启。[heading3]在ComfyUI里的使用[heading3]相关资源链接[content]BitsandBytes Guidelines and Fluxhttps://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981ComfyUI_bitsandbytes_NF4节点https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4flux1-dev-bnb-nf4.safetensorshttps://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors

Others are asking
低显存版怎么安装
对于低显存版的安装,以下是相关步骤: 1. FLUX.1 低显存方案(8G 以下): 将 flux1devbnbnf4.safetensors 放入 ComfyUI\models\checkpoints 文件夹内。 下载 ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 ,放入解压后 ComfyUI\custom_node 文件夹内。 注:如果报错,请更新 BitsandBytes 库,下载放入解压后 ComfyUI\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。 2. Dreambooth Extension for StableDiffusionWebUI: 在 SD Web UI 中转到“Extensions(扩展)”选项卡,选择“Available(可用)”子选项卡,选择“Load from:(从...加载)”以加载扩展列表,最后在 Dreambooth 条目旁边点击“install(安装)”。 安装完成后,必须完全重新启动 StableDiffusion WebUI。重新加载 UI 将无法安装所需的依赖项。 还需要更新版本的 diffusers,因为 SDWebUI 使用的是 0.3.0 版本,而 DB 训练需要>=0.10.0 版本。没有正确的 diffusers 版本会导致“UNet2DConditionModel”对象没有属性“enable_gradient_checkpointing”的错误消息,以及安全检查器警告。
2025-01-09
comy UI FLUX 低显存
ComfyUI FLUX 低显存运行的相关内容如下: 工作流: 目的是让 FLUX 模型能在较低的显存情况下运行。 分阶段处理思路: 先使用 Flux 模型在较低分辨率下进行初始生成以提高效率。 采用两阶段处理,先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用。 使用 SD 放大提升图片质量。 工作流的流程: 初始图像生成(Flux): UNETLoader:加载 flux1dev.sft 模型。 DualCLIPLoader:加载 t5xxl 和 clip_l 模型。 VAELoader:加载 fluxae.sft。 CLIPTextEncode:处理输入提示词。 BasicGuider 和 RandomNoise:生成初始噪声和引导。 SamplerCustomAdvanced:使用 Flux 模型生成初始图像。 VAEDecode:解码生成的潜在图像。 初始图像预览:PreviewImage 显示 Flux 生成的初始图像。 图像放大和细化(SDXL): CheckpointLoaderSimple:加载 SDXL 模型(fenrisxl_SDXLLightning.safetensors)。 UpscaleModelLoader:加载 RealESRGAN_x4.pth 用于放大。 VAELoader:加载 sdxl_vae.safetensors。 ImageSharpen:对初始图像进行锐化处理。 UltimateSDUpscale:使用 SDXL 模型和放大模型进行最终的放大和细化。 最终图像预览:PreviewImage 显示最终放大和细化后的图像。 FLUX 模型的选择: 用半精度 fp8 dev 版本(能用单精度 dev 版本的尽量用),也适合 fp8 的 T8 模型,降低对内存的占用。 记得把 weight dtype 也设置为 fp8,降低对显存的使用。 建议:先关闭高清放大部分,等跑出来效果满意的图片后,再开启放大。 ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更加精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候能清晰发现错误出在哪一步。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI
2025-01-08
在comyui中,使用flux1-dev模型24g显存够吗
在 ComfyUI 中使用 Flux1dev 模型,24G 显存是可以的,但建议内存尽量高于 32G 以避免意外情况的发生。如果您的显卡是 24G 或更高,右键 24G 那个 train_flux_24GLora 的文件。修改脚本路径和参数时,要注意底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径的正确填写。ae.safetensors 和 flux1dev.safetensors 的下载地址为:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ,百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。最后下载 dev 的工作流: ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI 把工作流或图片拖拽到其中即可。
2024-11-12
在comyui中,使用flux1-dev模型需要多少显存
在 ComfyUI 中使用 flux1dev 模型所需的显存情况如下: 相关模型的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址为:https://huggingface.co/Kijai/fluxfp8/tree/main 。 低显存方案(8G 以下):flux1devbnbnf4.safetensors ,放入 ComfyUI\\models\\checkpoints 文件夹内,下载链接为 https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 。 此外,还提供了以下相关资源链接: BitsandBytes Guidelines and Flux :https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
2024-11-12
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04
flux lora训练指南
以下是关于 Flux 的 Lora 模型训练的指南: 准备工作: 需要下载以下模型: t5xxl_fp16.safetensors clip_l.safetensors ae.safetensors flux1dev.safetensors 注意事项: 1. 不使用的话,模型放置位置不限,但要清楚其“路径”,后续会引用到。 2. 训练建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 修改脚本路径和参数: 如果显卡是 16G,右键 16G 的 train_flux_16GLora 文件;如果显卡是 24G 或更高,右键 24G 的 train_flux_24GLora 文件。(DB 全参微调对硬件要求高,内存 32G 可能不行。即使是 train_flux_24GLora 方式,也建议内存高于 32G 以避免意外。) 右键用代码编辑器打开文件,理论上只需修改红色部分:底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径。如果 4 件套在一个文件夹,路径填写更简单;若不在,需准确复制各模型的路径,注意检查格式,避免多双引号、漏双引号或路径错误。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。zip 文件可以包含图片+标签 txt,也可以只有图片(之后可在 c 站使用自动打标功能),也可一张一张单独上传照片,但建议提前将图片和标签打包成 zip 上传。Zip 文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传 zip 后等待一段时间,确认创建数据集,返回到上一个页面,等待上传成功后可点击详情检查,能预览到数据集的图片以及对应的标签。 Lora 训练: 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。选择数据集,点击右侧箭头选择上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词可随机抽取数据集中的一个标签填入。训练参数可调节重复次数与训练轮数,若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。可按需求选择是否加速,点击开始训练,会显示所需消耗的算力,然后等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有生图,点击会自动跳转到使用此 lora 生图的界面,点击下方的下载按钮则会自动下载到本地。
2025-01-04
flux模型风格提示词
以下是关于 Flux 模型风格提示词的相关信息: ComfyUI Flux redux: Redux 模型是轻量级的,可与 Flux.1配合使用,基于 1 个输入图像生成图像变体,无需提示,适合快速生成特定样式图像。 往一张图上融合时,提示词最好描述图片背景颜色。 将 Redux 模型下载到 comfyui/models/style_models,下载 sigclip_patch14384.safetensors 到 ComfyUI/models/clip_vision。 重绘节点为 ComfyUIInpaintEasy,相关链接:https://github.com/CYCHENYUE/ComfyUIInpaintEasy。 ComfyUI FLUX 模型的安装部署: 模型 FLUX.1中,建议选择 dev 版本,显卡可以的用 fp16,显卡不够用的选 fp8。模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,“UNET 加载器”节点中的 weight_dtype 可设置为 fp8 降低显存使用量,但可能稍降质量,默认的 weight_type 显存使用较大。 clip 方面,t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹里,相关链接:https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main。可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,有超过 32GB 内存建议用 fp16。 Vae 下载后放入 ComfyUI/models/vae 文件夹,相关链接:https://huggingface.co/blackforestlabs/FLUX.1schnell/tree/main。 T5(/t5xxl_fp16.safetensors)的 clip 原本有输入输出,可能会导致提示词被吞,短提示效果差,训练 flux 或 sd3 时应尽量用长提示词或自然语言。 STYLE PROMPTS 风格: Stratospheric:关联流派为 Soundtrack、Classical、Orchestral。指高空和极高的音乐风格,具有高亢壮丽特质,典型用于表现高空和极高情感的音乐作品,示例为 Queen 的《Bohemian Rhapsody》。 Streetwise:关联流派为 HipHop、Rap、R&B。指街头和世故的音乐风格,具有现实机智特质,典型用于表现街头和世故情感的音乐作品,示例为 JayZ 的《Empire State of Mind》。 Strength:关联流派为 Rock、Hard Rock、Arena Rock。指力量和坚强的音乐风格,具有强大坚定特质,典型用于表现力量和坚强情感的音乐作品,示例为 Survivor 的《Eye of the Tiger》。 Stressful:关联流派为 Progressive Rock、Psychedelic Rock、Classic Rock。指紧张和压力的音乐风格,具有紧张焦虑特质,典型用于表现紧张和压力情感的音乐作品,示例为 Pink Floyd 的《Time》。 Stretching:指延伸和扩展的音乐风格,具有延展渐进特质,典型用于表现延伸和扩展情感的音乐作品。
2025-01-03
flux-dev提示词
以下是关于 ComfyUI Fluxdev 提示词的相关信息: Redux 模型:是轻量级模型,可与 Flux.1配合使用,基于 1 个输入图像生成图像变体,无需提示,适合快速生成特定样式的图像。若要往一张图上融合,提示词最好描述图片的背景颜色。将 Redux 模型下载到 comfyui/models/style_models,下载 sigclip_patch14384.safetensors 到 ComfyUI/models/clip_vision。重绘节点可使用 ComfyUIInpaintEasy,链接为 https://github.com/CYCHENYUE/ComfyUIInpaintEasy。 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成以提高效率,采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)和图像放大和细化(SDXL),各阶段涉及不同的模型加载、处理和预览步骤。 模型的安装部署:FLUX.1中建议选择 dev 版本,显卡可以的用 fp16,显卡不够用的选 fp8,模型下载后放入 ComfyUI/models/unet/文件夹。若爆显存,可在“UNET 加载器”节点中的 weight_dtype 设置为 fp8 降低显存使用量,但可能稍降质量。t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹,可使用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,超过 32GB 内存建议使用 fp16。Vae 下载后放入 ComfyUI/models/vae 文件夹。T5(/t5xxl_fp16.safetensors)的 clip 原本有输入输出,可能导致提示词被吞,短提示效果差,训练 flux 或 sd3 时应尽量用长提示词或自然语言。
2025-01-03
我想问 有没有可以帮忙写 flux 或者其他图像模型 prompt 的 system prompt 模板
以下是为您整理的相关内容: 关于 FLUX 模型的安装部署: 模型选择:FLUX.1 有 dev、dev fp8、schnell 等版本,建议选择 dev 版本,显卡较好可用 fp16,显卡不够选 fp8。模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,可在“UNET 加载器”节点中将 weight_dtype 设置为 fp8,降低显存使用量,但可能稍降质量。 clip:t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹里,也可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,超过 32GB 内存建议用 fp16。 Vae:下载后放入 ComfyUI/models/vae 文件夹。 关于训练 Midjourney 的 prompt: 训练问题:强大的 DMs 通常消耗数百个 GPU 天,推理由于顺序评估而成本高昂。在有限的计算资源上应用 DMs 于强大的预训练自动编码器的潜在空间中训练,可在不影响质量和灵活性的情况下实现复杂度降低和细节保留的最佳点,显著提高视觉保真度。引入交叉注意力层到模型架构使扩散模型成为强大灵活的生成器,支持文本和边界框等一般条件输入,实现高分辨率卷积合成。 版本:Midjourney 定期发布新模型版本以提高效率、连贯性和质量。最新模型为默认,也可通过version 或v 参数或/settings 命令选择其他版本。V5 模型于 2023 年 3 月 15 日发布,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。 关于 ComfyUI 图片提示词反推提示词生成: 在 ComfyUI 里使用 MiniCPM 做图片提示词反推与文本提示词生成,可和 flux 模型配合生成图片,建议使用量化版本的模型(int4 结尾)节省显存。 安装方法:进入 ComfyUI 自定义节点目录,克隆相关仓库,重启 ComfyUI。 模型下载:网盘 https://pan.quark.cn/s/00b3b6fcd6ca ,下载后放入 ComfyUI 的 models 文件夹下 MiniCPM 文件夹中,没有就新建一个。
2025-01-02
iphone 如何安装 ChatGPT?
以下是在 iPhone 上安装 ChatGPT 的步骤: 1. 在 Apple Store 下载 ChatGPT:中国区正常无法下载,需切换到美区。美区 Apple ID 注册教程可参考知乎链接:https://zhuanlan.zhihu.com/p/696727277 。最终在 Apple Store 搜索到 ChatGPT 结果后下载安装,注意别下错。 2. 支付宝购买苹果礼品卡并充值,用于订阅付费 App: 打开支付宝,地区切换到美区任意区,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买,建议先买 20 刀。 支付宝购买礼品卡。 在 apple store 中兑换礼品卡。 在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅,可到订阅列表中取消订阅。 完成上述步骤后,即可开始使用 ChatGPT 4o: 1. 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员不管在苹果还是安卓手机上购买的,电脑上都能登录。 2. 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音,就可以体验流畅的语音对话。 另外,注册苹果美区 ID 的步骤如下: 1. 电脑上打开 Apple ID 的注册页面:https://appleid.apple.com/ac 。 2. 填写验证码后点继续。 3. 到谷歌邮箱接收邮箱验证码。 4. 接着验证手机号码。 5. 验证完后会出现页面,此时美区 ID 已注册但未激活,切换到手机操作。 6. 打开 App Store,点击右上角人形头像。 7. 拉到最底下,点击退出登录,先退出国内的 ID。 8. 之后再点击右上角人形头像。 9. 正常设置里会登录国内 ID,这里选择否,手动输入美区 ID。 10. 接着会收到短信进行双重验证。 11. 之后完成美区的 ID 登录。 12. 随便找个软件下载。 13. 此时会弹出提示,因为是新注册的 ID,需要点击“检查”进行激活。 14. 点击同意,进入下一页填写美国地址。 15. 最关键的一步:付款方式中没有选项“无”或者“none”时,只需要输入街道地址和电话。 16. 至此,通过中国 IP、中国手机号、免信用卡成功注册一个美区 ID,就可以用这个美区 ID 下载例如小火箭(科学上网必备)、ChatGPT、Discord、X、TikTok 等等软件。
2025-01-14
comfyui安装
ComfyUI 的安装方式主要有以下几种: 1. 本地安装: 命令行安装:这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行及代码的用户有一定门槛。ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中,您也可以按照 Readme 文档进行操作。 安装包安装:这种方法安装比较简单,下载就能用。ComfyUI 的官方安装包目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,您只需下载最新的版本,解压就能使用。 2. 云端安装:云端配置相对较高,生成图片的速度会更快,但需要一定的费用。如果您想在云端安装,可以跳到 https://www.comflowy.com/zhCN/preparationforstudy/installcloud 。 在进行本地安装之前,还需要安装一些环境: 1. 依次下载并安装 Python(版本 3.10 以上)、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 Python 安装包: VSCode 安装包: Git 安装包: 安装 ComfyUI 时,您可以通过以下方式: 下载安装包或者点击链接 https://github.com/comfyanonymous/ComfyUI 下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 此外,ComfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 目录下。 大模型存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints ,Lora 存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras ,Vae 存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-12
华为手机安装chatgpt
以下是华为手机安装 ChatGPT 的步骤: 1. 打开系统自带的谷歌服务框架: 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到华为应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索“ChatGPT”进行下载安装,注意开发者是 OpenAI,别下错。 可能会遇到“google play 未在您所在的地区提供此应用”的问题,解决方法如下: 在 google play 点按右上角的个人资料图标。 依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。 在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。 如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 4. 体验 ChatGPT: 如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 5. 订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus。
2025-01-07
additional networks 安装下载
以下是关于 additional networks 安装下载的相关信息: LORA 模型: LORA 可以固定画风、人物、物品、动作姿态等的特征,文件通常有几十上百兆,承载信息量远大于 Embedding,在还原真人物品时细节精度更高。 下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。 使用 LORA 时要注意作者使用的大模型,一般需配套使用,还可能需要加入特定触发词。 Hypernetworks 模型: 主要针对画风训练,可像 LORA 一样加载。 下载的文件放在根目录的【…\\models\\hypernetworks】文件夹下,使用时点击红色小书,找到 Hypernetworks 选项卡加载。 常用模型下载网站: 模型安装: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 模型存放位置示例(InstantID): 下载并放在 ComfyUI/models/insightface/models/antelopev2 git 地址:https://github.com/deepinsight/insightface/releases 网盘地址:https://www.123pan.com/s/fOu4Tdb3Vdd.html 提取码:KAKA 下载文件并放在 ComfyUI/models/instantid git 地址:https://huggingface.co/InstantX/InstantID/resolve/main/ipadapter.bin?download=true 网盘地址:https://www.123pan.com/s/fOu4Tdc3Vdd.html 提取码:KAKA 下载并放在 ComfyUI/models\\controlnet huggingface 地址 https://huggingface.co/InstantX/InstantID/resolve/main/ControlNetModel/diffusion_pytorch_model.safetensors?download=true 下载文件 Faceid 并放在 ComfyUI/models\\ipadapter 不同类型的模型后缀名几乎一样,无法通过后缀名区分时,可以通过检测。
2025-01-02
如何安装Cursor
以下是安装 Cursor 的步骤: 1. 下载 Cursor:访问 https://www.cursor.com/ 进行下载。 2. 注册账号:可以使用自己的邮箱登录,包括 google、github、163、qq 等邮箱,也可直接接受二维码登录。 3. 安装中文包插件。 4. 对于订阅模式: 普通用户注册后,可以免费体验 14 天的 Pro 版本,拥有高级模型的 500 次对话机会,比如 claude3.5sonnet、gpt4o。除此之外,可以无限使用 gpt4omini 和 cursorsmall 模型。 免费用户:一共可以使用 2000 次普通模型的问答。 Pro 模式:20 刀/月,500 次高级模型问答,不限次普通模型问答。 Business 模式:40 刀/月,全部不限制次数。 安装和使用前,请自备魔法。 Mac 用户使用 Command+i 唤醒 Composer,输入提示词后开始创建代码结构。关于其他系统的快捷键,可以从 Cursor>Setting>Keyboard Shortcuts 快捷指令清单中查看。 默认情况下它会安装在用户目录,可根据需要迁移目录。
2024-12-24