Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用langchian加载本地模型

Answer

要使用 Langchain 加载本地模型,您可以按照以下步骤进行:

  1. 加载所需的库和模块,例如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型。使用 ollama 前请确保服务已经开启并下载好模型。
  2. 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。
  3. 为文档内容生成向量,使用文本向量模型 bge-m3。从 hf 下载好模型后,假设放置在某个路径 /path/to/bge-m3,通过函数利用 FAISS 创建高效的向量存储。

在整个过程中,还需要了解以下相关知识:

  1. RAG(Retrieval Augmented Generation):大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成。RAG 应用包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。
  2. Ollama:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,提供模型库,用户可下载不同模型,还支持自定义模型、提供 REST API 用于运行和管理模型及与其他应用程序集成,社区贡献丰富。安装完后确保后台服务已启动,可通过 ollama list 确认,通过 ollama 命令下载模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

手把手教你本地部署大模型以及搭建个人知识库

因为利用大模型的能力搭建知识库本身就是一个RAG技术的应用。所以在进行本地知识库的搭建实操之前,我们需要先对RAG有一个大概的了解。以下内容会有些干,我会尽量用通俗易懂的描述进行讲解。我们都知道大模型的训练数据是有截止日期的,那当我们需要依靠不包含在大模型训练集中的数据时,我们该怎么做呢?实现这一点的主要方法就是通过检索增强生成RAG(Retrieval Augmented Generation)。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给LLM。我们可以将一个RAG的应用抽象为下图的5个过程:文档加载(Document Loading):从多种不同来源加载文档。LangChain提供了100多种不同的文档加载器,包括PDF在内的非结构化的数据、SQL在内的结构化的数据,以及Python、Java之类的代码等文本分割(Splitting):文本分割器把Documents切分为指定大小的块,我把它们称为“文档块”或者“文档片”存储(Storage):存储涉及到两个环节,分别是:将切分好的文档块进行嵌入(Embedding)转换成向量的形式将Embedding后的向量数据存储到向量数据库检索(Retrieval):一旦数据进入向量数据库,我们仍然需要将数据检索出来,我们会通过某种检索算法找到与输入问题相似的嵌入片Output(输出):把问题以及检索出来的嵌入片一起提交给LLM,LLM会通过问题和检索出来的提示一起来生成更加合理的答案[heading2]文本加载器(Document Loaders)[content]文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

1.支持多种大型语言模型:Ollama支持包括通义千问、Llama 2、Mistral和Gemma等在内的多种大型语言模型,这些模型可用于不同的应用场景。2.易于使用:Ollama旨在使用户能够轻松地在本地环境中启动和运行大模型,适用于macOS、Windows和Linux系统,同时支持cpu和gpu。3.模型库:Ollama提供了一个模型库,用户可以从中下载不同的模型。这些模型有不同的参数和大小,以满足不同的需求和硬件条件。Ollama支持的模型库可以通过https://ollama.com/library进行查找。4.自定义模型:用户可以通过简单的步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。5.API和集成:Ollama还提供了REST API,用于运行和管理模型,以及与其他应用程序的集成选项。6.社区贡献:Ollama社区贡献丰富,包括多种集成插件和界面,如Web和桌面应用、Telegram机器人、Obsidian插件等。7.总的来说,Ollama是一个为了方便用户在本地运行和管理大型语言模型而设计的框架,具有良好的可扩展性和多样的使用场景。后面在捏Bot的过程中需要使用Ollama,我们需要先安装,访问以下链接进行下载安装。https://ollama.com/download/安装完之后,确保ollama后台服务已启动(在mac上启动ollama应用程序即可,在linux上可以通过ollama serve启动)。我们可以通过ollama list进行确认,当我们还没下载模型的时候,正常会显示空:可以通过ollama命令下载模型,目前,我下载了4个模型:几个模型简介如下:

Others are asking
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05
SD大模型无法加载
SD 大模型无法加载可能有以下原因及解决方法: 1. LORA 方面: LORA 可以提炼图片特征,文件通常有几十上百兆,承载信息量远大于 Embedding。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。 使用 LORA 时要注意看作者使用的大模型,一般需配套使用,还可能需要加入特定触发词,如盲盒 LORA 需加入“full body, chibi”等提示词。 2. Hypernetworks 方面: Hypernetworks 主要针对画风训练,文件下载后放在根目录的【…\\models\\hypernetworks】,使用时点击红色小书,找到 Hypernetworks 选项卡加载。 3. 模型下载与安装方面: 常用的模型下载网站有:。 下载模型后需放置在指定目录,大模型(Ckpt)放入【models\\Stablediffusion】,VAE 模型放入【models\\Stablediffusion】或【models\\VAE】目录(有的大模型自带 VAE 则无需再加),Lora/LoHA/LoCon 模型放入【extensions\\sdwebuiadditionalnetworks\\models\\lora】或【models/Lora】目录,Embedding 模型放入【embeddings】目录。模型类型可通过检测。 不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】,在左上角模型列表中选择(看不到就点旁边蓝色按钮刷新)。 旁边的 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,可在启动器里下载,放在根目录的【……\\models\\VAE】。 Embedding 功能相当于提示词打包,下载 Embedding 可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的【embeddings】文件夹里。 由于无法确定您大模型无法加载的具体原因,您可以根据上述内容逐一排查。
2024-11-12
知道源代码就可以加载AI吗?
一般来说,仅仅知道源代码并不一定能够直接加载 AI 。以 GPT4 的代码解释器为例,它是一种特定的模式,允许用户将文件上传到 AI,让 AI 编写和运行代码,并下载 AI 提供的结果。它可以用于执行程序、运行数据分析、创建各种文件、网页甚至游戏。但使用代码解释器进行分析存在未经培训的人使用的风险,许多测试专家对此印象深刻,甚至有论文表明它可能需要改变培训数据科学家的方式。如果您想了解更多关于如何使用它的详细信息,可以访问相关帖子。
2024-10-01
什么是加载别人训练的qwen模型?
加载别人训练的 qwen 模型通常涉及以下步骤: 1. 对于直接调用千问的某一个大模型,如“qwenmax”模型,在 COW 中需要更改 key 和 model。在 /root/chatgptonwechat/文件夹下,打开 config.json 文件进行更改,并添加"dashscope_api_key"。获取 key 可参考视频教程或图文教程。同时,需要“实名认证”后,这些 key 才可以正常使用,若对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,可能是未实名认证,可点击去,或查看自己是否已认证。 2. 部署大语言模型时,如下载 qwen2:0.5b 模型,对于不同的电脑系统操作有所不同。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。之后复制相关命令行并粘贴回车,等待自动下载完成。 3. 对于 Ollama 大模型部分,为避免没下载大模型带来的报错,需要先下载 ollama,网站:网站中复制代码,然后像特定操作一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键粘贴刚才的代码,等待下载即可。
2024-10-01
怎么加载开源模型?
加载开源模型的步骤如下: 1. 下载相关模型节省时间: Base Model DreamShaper XL Turbo: https://civitai.com/models/112902/dreamshaperxl LoRA:Envy Anime Watercolor XL 03:https://civitai.com/models/382684/envyanimewatercolorxl03 Alphonse Mucha Style:https://civitai.com/models/63072/alphonsemuchastyle 2. 打开以下链接放在后台: Ollama: https://ollama.com/ https://github.com/stavsap/comfyuiollama IPAdapter:https://github.com/cubiq/ComfyUI_IPAdapter_plus InstantID: https://github.com/cubiq/ComfyUI_InstantID PuLID:https://github.com/cubiq/PuLID_ComfyUI 3. 安装缺失节点: 下载过程中若发现 layer style 下不了,可重启重新下载,尝试修复。若仍不行,从官网重新下载到./custom_nodes 的文件夹下。 4. 从官网下载两个文件,点击左上角部分将加载器展开并选择官网下载好的两个模型。 5. 对于 GDino 加载器部分,在链接:处下载相关文件,然后检查文件是否齐全。对于 groundingdino 和 sams 配置是否齐全可以使用“抠头发.json”来检验。 6. Ollama 大模型部分: 首先,下载 ollama,网站: 其次,在网站中,复制代码。然后,打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到命令行,右键粘贴刚才的代码,等待下载。
2024-10-01
controlnet一直加载怎么办
ControlNet 一直加载可能由以下原因导致及对应的解决方法: 1. 模型版本问题:确保 checkpoint、ContalNet 等所有需要加载模型的版本均基于 SD1.5,否则可能会报“超出索引”的错误。 2. 节点未安装完全:载入工作流后若出现爆红部分,可能是节点没下好、没下全。此时可以先全部更新,让所缺节点“显露出来”,然后安装好缺失的节点。 3. 参数设置问题:假如右下角的区域报红,那么就得根据报错信息相应调整一下左上角蓝色区域的 h、w 参数。 此外,ControlNet 还有一些新的功能和应用,例如: 1. 1.1 版本新出的 lineart 线稿提取功能,可先通过 invert 预处理将白底黑线处理成黑底白线,然后切换到 lineart 预处理器和模型进行生成。 2. mlsd 直线线条检测功能,一般用在建筑或者室内设计上,预处理器可提炼出室内的结构线。 ComfyUI 中的 ControlNet 高级控件: 在时间步和批处理潜变量之间调度 ControlNet 强度的节点,以及应用自定义权重和注意力掩码。这里的 ControlNet 节点完全支持滑动上下文采样。输入包括 positive(提示词(正面))、negative(提示词(负面))、control_net(加载了控制网络)、image(用于指导控制网络的图像)、mask_optional(应用于控制网络的注意力掩码)、timestep_kf(时间步关键帧)、latent_kf_override(潜在关键帧的覆盖)。
2024-08-29
什么是AI大模型
AI 大模型是一个复杂的体系,具有以下特点和组成部分: 1. 整体架构: 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 数据层:包括静态的知识库和动态的三方数据集,是企业根据自身特性维护的垂域数据。 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 表现层:即应用层,是用户实际看到的地方。 2. 运作原理:以 LLm 为例,大模型在回复时是一个字一个字地推理生成内容,类似于输入法的输入联想逻辑。但存在计算量和干扰信息的问题,词向量机制和 transformer 模型中的 attention 自注意力机制解决了这些难题。 3. 带来的变革:大模型与当下智能语音技能的 NLU 存在本质差别。NLU 是通过规则、分词策略等训练而成,运作逻辑可观测,具有 ifelse 式逻辑性;大模型凭借海量数据在向量空间中学习知识的关联性,运作逻辑难以观测,脱离了 ifelse 层面。此次 AI 变革量级可能与移动互联网同级,甚至可能达到蒸汽机出现的级别。
2025-01-13
我想利用国产的语言大模型,根据会议内容生成会议纪要。1-请给我推荐能够实现以上内容的国产大模型;2-我应该提供哪些信息给大模型,才能实现我的想法。
以下是为您推荐的能够根据会议内容生成会议纪要的国产大模型:文心一言、讯飞星火等。 为了实现您的想法,您应该提供给大模型以下信息: 1. 详细的会议内容,包括与会人员的发言、讨论的主题和重点等。 2. 明确您对会议纪要的格式和重点的要求,例如是否需要按照特定的结构进行整理,是否需要突出某些关键信息等。 3. 如有相关的背景资料或补充说明,也应一并提供,以便大模型更全面地理解会议内容。
2025-01-13
给大模型喂养的知识库哪里有
以下是一些获取给大模型喂养的知识库的途径和相关信息: 1. 在 Coze 中,大模型存在不准确和数据限制的问题,因此知识库的出现是为解决数据准确性。典型应用如客服系统,公司可将用户问题及答案记录在文档中作为知识库投喂给大模型,以实现更准确的回答。 2. 在阿里云百炼中,为 AI 助手增加私有知识的步骤包括:上传文件,在百炼控制台的中设置,打开知识检索增强开关、选择目标知识库并发布。 3. 在探讨大模型的 Brain 模块时,知识分为两大类,其中内置知识又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活的事实和逻辑规则,专业知识涉及特定领域的详细信息,语言知识包括语法规则、句型结构、语境含义等。
2025-01-12
大模型应用解决方案
以下是关于大模型应用解决方案的相关内容: 零跑汽车基于百炼实现大模型落地零跑座舱 客户介绍:零跑汽车成立于 2015 年 12 月 24 日,是一家创新型的智能电动汽车品牌,拥有智能电动汽车完整自主研发能力,2023 年已位列新能源品牌销量前三。从 2017 年起,零跑汽车便与阿里云展开深度合作。近日,零跑汽车已对 OTA 功能完成大规模升级,携手阿里云首次在座舱场景中增加“语音大模型”功能,用于聊天、基础知识问答、文生图等场景,提升用户驾驶体验。 阿里云的解决方案: 接入通义大模型实现开放式语音交互:改变了传统的固定形式的问答模式,支持用户与零跑智能座舱进行开放式语音交互(闲聊场景),进行自然、连贯的多轮对话,可秒级响应,同时结合企业知识库和互联网知识库,满足用户多元化的需求。 基于语音调用通义万相实现秒级作图:零跑采用语音助手调用云端通义系列大模型,帮助用户通用语音调用通义万相实现文生图换壁纸,实现秒级作图,提升娱乐互动;支持语音查找如何使用汽车功能、规划路径等功能,丰富用户操作体验;知识库内容覆盖了零跑全系汽车知识和其他汽车品牌开放领域的信息。 基于百炼构建大模型应用架构:基于百炼平台,零跑汽车构建了开放、可扩展的大模型应用架构,基于统一的大模型底座,实现了零跑座舱大模型应用场景的快速扩展与迭代,降低大模型应用的创新门槛与成本。 RAG 提示工程(一):基础概念 大语言模型应用于实际业务场景存在的问题: 知识的局限性:模型自身的知识完全源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:大模型基于数学概率的文字预测,存在提供虚假、过时或通用信息等问题。 数据安全性:企业担心数据泄露,不愿将私域数据上传第三方平台训练。 RAG 的优势:可以让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户可深入了解 LLM 生成结果的过程。并且,RAG 可以和微调结合使用,两者并不冲突。 七大行业的商业化应用 企业解决大模型落地难问题: 算力方面:国产芯片在软件适配度、稳定性方面不足,与英伟达显卡解耦能力弱。可以从协同化、模型小型化、再训练、融合计算四方面来解决算力矛盾问题。 价格方面:训练成本高、数据筛选难度大,千亿参数模型报价高昂,让很多客户望而却步。垂直大模型的数据生成规模小、场景易用、Chat 思维能力高。
2025-01-12
大模型应用架构
大模型应用架构主要包括以下几个方面: 1. 零跑汽车案例: 客户介绍:零跑汽车成立于 2015 年 12 月 24 日,是一家创新型的智能电动汽车品牌,坚持核心技术自主研发,位列新能源品牌销量前三,自 2017 年起与阿里云展开深度合作。 阿里云的解决方案:通过百炼平台实现大模型落地零跑座舱,接入通义大模型实现开放式语音交互,基于语音调用通义万相实现秒级作图,基于百炼构建开放、可扩展的大模型应用架构,降低创新门槛与成本。 2. 整体架构分层: 基础层:为大模型提供硬件支撑和数据支持,如 A100、数据服务器等。 数据层:包括静态的知识库和动态的三方数据集。 模型层:有 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型)。 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 3. 基于多模态大模型的应用: 前言:随着 ChatGPT 的发展,多模态技术突飞猛进,呈现出一统计算机视觉(CV)和自然语言处理(NLP)的势头。 应用介绍:介绍了一款基于多模态大型模型的应用,能够实时分析当前地区新春的流行趋势。后端采用 llama.cpp 挂载 LLaVA 模型提供推理服务,部署 Flask 应用用于数据前处理和后处理,提供 Stream 流服务,前端页面采用 HTML5 采集画面和用户输入。
2025-01-12
你的大数据模型更新到什么时候?
以下是关于大数据模型更新的相关信息: 随着 GPT3.5Turbo 的发布,一些模型正在不断更新。为减少模型更改意外影响用户的可能性,还提供将在 3 个月内保持静态的模型版本。同时,人们能够贡献评估以帮助针对不同用例改进模型。如有兴趣,可查看存储库。以下模型是将在指定日期弃用的临时快照。若想使用最新的模型版本,请使用标准模型名称,如 GPT4 或 GPT3.5Turbo。 Midjourney 会定期发布新版本模型来提高效率、整体连贯性和质量。默认是最新的模型,可使用version 参数,其可选值为 1、2、3、4 和 5,该参数可缩写为v。Midjourney V5 模型是最新和最先进的模型,于 2023 年 3 月 15 日发布。要使用此模型,可在提示的末尾添加v 5 参数,或使用/settings 命令并选择 5️⃣MJ Version 5。 就在昨天,WebUI 的 ControlNet1.1.4 版本终于更新,这次的更新支持了 SDXL1.0 的模型。此次总共出了四种控制类型,分别是 Canny、Depth、Sketch 和 Openpose。可来到 Hugging Face 的网址:https://huggingface.co/lllyasviel/sd_control_collection/tree/main 查看相关模型。
2025-01-11