Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能体

Answer

智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。

智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。

智能体的类型:

  1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器。
  2. 基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车。
  3. 目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统。
  4. 效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体。
  5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。

智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、在 LinkerReader 节点前的代码节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告某一部分的主题拼装,形成用于网络搜索的关键词句。必应搜索节点根据指定的关键词句搜索相关网络内容。LinkerReader 节点从必应搜索到的网页链接中获取网页详细内容。在 LinkerReader 节点前的代码节点用于等待 2 - 3 秒,错开众多 LinkerReader 节点的执行时间,避免拥塞。代码节点将搜索到的网页链接信息进行过滤,只保留网页名称、摘要、url 信息,以备后面大模型进行处理。大模型节点根据多个网页中获取的内容按照指定的格式生成报告内容,并根据代码过滤后的搜索摘要信息列表将引用链接加到报告内容中。结束节点将 7 部分大模型节点生成的内容拼接并流式输出。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是智能体 Agent

"智能体"(Agent)在人工智能和计算机科学领域是一个非常重要的概念。它指的是一种能够感知环境并采取行动以实现特定目标的实体。智能体可以是软件程序,也可以是硬件设备。以下是对智能体的详细介绍:[heading3]智能体的定义[content]智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。2.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。3.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。4.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。5.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

【市场分析报告】-超级宣发-作品说明

本智能体主要通过一个工作流实现,采用单Agent(工作流模式)。[heading3]2工作流主要配置[content]工作流全景图:工作流主要节点说明:整个工作流按照市场分析报告内容划分,分成7个分支处理,每个分支调研并生成报告中的一部分。这样可以最大的发挥并行处理的效率。文本处理节点,将用户输入与报告某一部分的主题拼装,形成用于网络搜索的关键词句。必应搜索节点,根据指定的关键词句搜索相关网络内容。LinkerReader节点,从必应搜索到的网页链接中获取网页详细内容。此节点采用批处理方式,每批处理搜索结果中的一条链接。在LinkerReader节点前的代码节点,用于等待2-3秒,可以将众多LinkerReader节点的执行时间错开,避免拥塞。代码节点,将搜索到的网页链接信息进行过滤,只保留网页名称、摘要、url信息,以备后面大模型进行处理。大模型节点,根据多个网页中获取的内容按照指定的格式生成报告内容,并根据代码过滤后的搜索摘要信息列表将引用链接加到报告内容中。结束节点,将7部分大模型节点生成的内容拼接并流式输出。

Others are asking
哪有有别人搭建完成的智能体我可以直接拿来使用呢?
以下是一些可以获取搭建完成的智能体并直接使用的途径: 1. 在五津的“宝藏智能体 club”中,创建智能体,输入人设等信息,放上创建的工作流。配置完成后进行测试,但千万不要直接发布。工作流中的某些节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 api_token 再发布。 2. 通过 Coze 接入: 2 月 14 日 8 点有火山引擎解决方案专家在飞书会议的直播,直播结束后可看回放: 。 学习文档: 。 模板更新: 。 创建账号,如果是普通账号,请自行升级或注册专业号后使用。 点击创建智能体,完成创建后,如果已创建好推理点,可在 Bot 编排里直接看到和选择创建好的推理模型,测试可用后直接发布。注意,如果发布到公共空间,其他人使用会消耗您的 Token(也可设置成仅自己使用)。 3. 在阿里云百炼平台中: 模型广场丰富,有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 无需部署直接用,和摩搭的最大区别在于无需部署,直接就能使用 Deepseek R1 模型。 价格与免费额度:价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送 100 万 token,LLAVA 限时免费。 授权与实名认证:使用需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 模型效果对比:在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态能力介绍:多模态可以识别更多输入信息,如读文件、图片等,而 Deepseek R1 本身不是多模态模型。 连接 Chat Box:通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 Deepseek R1,并获取 API key。 API key 重置:可删除旧的 API key 并重新创建,方便本地软件连接。 模型应用:如语音识别模型,能将语音快速转成文字,有多种应用场景。 智能体搭建:新建智能体应用,可选择模型,调整参数,如回复字数限制和携带上下文轮数等。 互联网搜索:在检索配置中开启互联网搜索,能从新闻网站获取最新新闻和天气等信息,会判断检索结果的合适性。
2025-03-10
智能体能够在工作为我们解决哪些具体的问题,怎么搭建自己的智能体
智能体能够在工作中为我们解决以下具体问题: 1. 回答私有领域问题,如公司制度、人员信息等。 2. 及时获取最新信息,如实时天气、比赛结果等。 3. 准确回答专业问题,如复杂数学计算、图像生成等。 智能体的典型应用场景包括: 1. 私有领域知识问答:准备好相关知识库文件,可在百炼控制台快速创建应用,适用于公司制度、人员信息等场景。 2. 个性化聊天机器人:百炼提供长期记忆功能,保存关键历史对话信息,还集成夸克搜索和图像生成等插件,扩展聊天功能。 3. 智能助手:引入 RAG(检索增强生成)能力、长期记忆和自定义插件等功能,帮助提升工作效率,如处理邮件、撰写周报等。 搭建自己的智能体的一般步骤如下: 1. 创建一个智能体,输入人设等信息。 2. 放上创建的工作流。 3. 配置完成后进行测试。 需要注意的是,在工作流中,若【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,不能直接发布。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 api_token 再发布。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。以扣子为例,其是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可发布到各种社交平台和通讯软件上。搭建扣子智能体可以通过简单 3 步:首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像即可。
2025-03-10
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别的算法。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 重要要素和模块: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成一个闭环。 尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习、与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2025-03-10
人工智能发展历史
人工智能的发展历史如下: 起源于二十世纪中叶,最初符号推理流行,带来了专家系统等重要进展,但因方法局限性和成本问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源变便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,“人工智能”一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。 AI 技术发展历程包括早期阶段(1950s 1960s)的专家系统、博弈论、机器学习初步理论;知识驱动时期(1970s 1980s)的专家系统、知识表示、自动推理;统计学习时期(1990s 2000s)的机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期(2010s 至今)的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-03-10
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,而现代能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。
2025-03-10
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10