直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

claude gpt 国内大模型的对比

回答

以下是关于 Claude、GPT 与国内大模型的对比情况:

在 2023 年度中文大模型基准测评的传统安全能力专项基准中:

  • Claude2 遥遥领先,取得最高分 83.00 分,在传统安全方面表现出色,这可能与 Anthropic 对 AI 安全的重视及精心设计的安全防护措施有关。
  • 文心一言 4.0(API)排在第二名,得分为 68 分。
  • 智谱清言和 Yi-34B-Chat 均超过 65 分。
  • GPT 系列在安全能力测评上呈现不稳定情况,超过 GPT3.5 的国内模型有 14 个,GPT4(API)表现不尽如人意,可能与国内外安全范围及 OpenAI 安全策略有关。

在主观和客观对比方面:

  • 国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数,文心一言 4.0 和智谱清言表现相对稳定。
  • GPT-4 Turbo 的表现最为稳定,差值仅有 0.86。

此外,国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。

AndesGPT 是 OPPO 自主训练的大语言模型,具有对话增强、个性专属和端云协同三大技术特征,在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用,涵盖知识、记忆、工具、创作等方向。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2023年度中文大模型基准测评报告.pdf

测评表现测评分析传统安全能力主要考察模型在财产隐私、违法犯罪、偏见歧视、社会和谐等方面的安全能力。在传统安全的测评中,Claude2遥遥领先取得了最高分83.00,高出第二名15分。Claude2的良好表现可能与Anthropic对AI安全的重视密不可分,Anthropic的首要目标是通过创建一个“有用、无害、诚实”的大语言模型,并配备精心设计的安全防护措施,来避免安全问题。排在第二名的是文心一言4.0(API)取得68分。紧随其后是智谱清言和Yi-34B-Chat,均超过了65分。在安全能力上的测评上,GPT系列依然呈现出不稳定的情况,超过GPT3.5的国内模型有14个。GPT4(API)不尽如人意,可能与国内外安全范围及OpenAI安全策略有关。总体来看,在传统安全测评中国内大模型的表现不俗,是当下国内大模型比较重视的一个方向,同样我们看到Claude2即使在中文场景下依然展现出很高的安全水准,值得国内大模型进一步分析。

2023年度中文大模型基准测评报告.pdf

信息安全相关的在线课程和讲座[blo优秀模型:AndesGPT(OPPO)简介:AndesGPT是OPPO自主训练的大语言模型。于11月16日2023 OPPO开发者大会上正式推出。AndesGPT对话增强、个性专属和端云协同三大技术特征。目前已接入OPPO智能助理新小布,可用于用机助手、内容创作、超级问答、专属AI、日程管理等全新能力,正在公测中。模型特点:AndesGPT在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三。在专业技能和语言任务上均有不俗表现,综合来看,AndesGPT是一个各项能力较为均衡的大模型,在国内大模型厂商中比较有竞争力。适合应用:AndesGPT聚焦在移动设备端的应用。主要涵盖四个方向:知识、记忆、工具、创作。目前AndesGPT已支持使用“系统设置、一方应用、三方服务、代码解释器”等各类工具。并且AndesGPT已全面支持文生文、文生图等场景,可以为用户提供真实有用的技能。

2023年度中文大模型基准测评报告.pdf

测评表现测评分析通过对比模型在主观简答题OPEN和客观选择题OPT上的不同表现,可以发现,国内大模型多数擅长做选择题。普遍选择题的分数会高于简答题的分数。其中,文心一言4.0和智谱清言表现相对稳定,分别为(13.38)和(-14.01)。GPT-4 Turbo的表现最为稳定,差值仅有0.86。SuperCLUE认为,客观题相对主观题更容易通过题库形式进行训练和提升;同时也由于客观题中包含中文特性问题,中文模型自然有一定的优势,所以应该综合来看模型的评测效果。值得关注的是,在本次测评中,国外的代表性大模型如GPT4的不同版本、Claude2、Llama2都很好的稳定性表现,值得国内大模型进一步分析研究。注:计算分值为模型的OPEN分与OPT分值的差值,用以观察模型在主观题和客观题上的不同表现。[heading1]开源竞争格局[content]开源现状开源模型对比国外代表模型

其他人在问
claude 3.5 haiku 怎么用
以下是关于Claude 3.5 Haiku使用的步骤: 1. 准备工作: 一台电脑(Window系统,理论上能跑Docker的都可以)。 Claude的官方Key(目前大多数中转不支持,需加紧对接)。 2. Docker安装:正常安装,完成后本地打开,登陆上去,确保左下角服务启动成功。 3. 拉取镜像:Claude官方提供了Demo(Python),可拉取到本地跑起来。代码拉取到本地后,在当前Python环境下安装依赖(建议3.11以上),然后根据官方文档设置环境变量,启动docker。对于不熟悉环境变量的朋友,可直接使用修改过的启动命令(key可以启动后再设置)。 4. 克神启动:等待镜像拉取,若无意外则启动成功。按照提示访问网页:http://localhost:8080,侧边栏有key,填上去即可正常使用。 此外,Anthropic发布了新功能computer use,同时发布了Claude 3.5 Haiku,并升级了Claude 3.5 Sonnet。Claude3家族上线,包括Claude 3 Haiku、Claude 3 Sonnet和Claude 3 Opus三款模型,现已上线Opus和Sonnet模型,即将推出Haiku模型。
2024-11-11
Claude提示词结构 如何应用
以下是关于 Claude 提示词结构及应用的相关内容: 标注提示词的不同部分:可以使用多种语法结构分隔文本与提示,分隔符既可以是复杂的 html 结构、纯文本,也可以自定义语言标记和格式,甚至 emoji 都可以成为分隔符。常用的语法结构有 Markdown、XML、HTML、JSON 等编程语言。 分解任务:这是做总结性输出或处理长文档时的有效方法,例如从原文中提取相关引文。 提示词链:分解并跨提示词使用。 使用 XML 标签:缺乏“结构”的提示词对 Claude 较难理解,而 XML 标签类似于“章节标题”,Claude 已针对其进行专门训练。
2024-11-08
claude使用教程
以下是关于 Claude 的使用教程: Claude 是由 Anthropic 公司开发的一款 AI 助手,以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名。它是基于自然语言处理技术和人工智能算法的聊天机器人,可以使用自然语言理解技术来理解人类语言,并使用自然语言生成技术进行回答和梳理,为各种应用提供支持,包括但不限于数据分析、自动化和个性化辅助。 要使用 Claude 的 Computer Use 功能,目前此功能只针对开发者在 API 中开放使用。 注册 Claude 的步骤如下: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码完成邮箱验证。 如果在注册过程中遇到需要海外手机号接收验证码的问题,有以下可能的解决方案: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册 Claude 账号。 3. 如果有海外朋友,可以请他们帮忙接收验证码,并将验证码告知。 完成注册后,若希望升级到 Claude Pro 版本以获取更强大的功能和更高的 API 调用限额,需要填写支付信息并选择一个合适的订阅计划。但需注意,订阅 Claude Pro 可能需要使用海外支付方式。同时,Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。 另外,给 Claude 的指示质量会对其输出的质量产生很大影响,特别是对于复杂任务。
2024-11-05
如何注册使用claude
Claude AI 是一款由 Anthropic 公司开发的 AI 助手,是基于自然语言处理技术和人工智能算法的聊天机器人,以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名,利用先进的机器学习技术、自然语言处理和深度学习算法,为各种应用提供支持,包括但不限于数据分析、自动化和个性化辅助。 要注册 Claude.ai,可按以下步骤进行: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码完成邮箱验证。 如果在注册过程中遇到需要海外手机号接收验证码的问题,可能的解决方案有: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册您的 Claude 账号。 3. 如有海外朋友,可请他们帮忙接收验证码,并将验证码告知您。 完成注册后,若希望升级到 Claude Pro 版本以获取更强大的功能和更高的 API 调用限额,需要填写支付信息并选择一个合适的订阅计划。值得注意的是,订阅 Claude Pro 可能需要使用海外支付方式。 请注意,Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。若在注册过程中遇到问题,可参考其他用户分享的详细注册教程和解决策略。
2024-11-04
claude和chatgpt是什么关系,哪个好用
Claude 和 ChatGPT 没有直接的关系。 Claude 是由 Anthropic 开发的语言模型,ChatGPT 是由 OpenAI 开发的。 关于哪个好用,这取决于具体的使用场景和个人需求。在一些情况下,Claude 可能因其某些特点而更适合某些用户,例如在阅读 PDF 和长文方面。而 ChatGPT 也有其优势,比如在输出内容品质上可能给人较好的感觉。 但需要注意的是,它们的性能和适用性会因用户的具体任务和期望而有所不同。
2024-10-27
Claude3.5免费的模型和付费的模型有什么区别
Claude 3.5 的免费模型和付费模型主要有以下区别: 1. 功能与性能:付费的 Opus 模型在某些方面可能具有更强大的功能和更出色的性能。 2. 访问权限:所有新用户有 14 天的 Pro 试用期,可访问所有 Pro 功能。14 天后未升级的用户将恢复为 Hobby 计划。 3. 快速请求:默认情况下,服务器会尝试给所有用户快速的高级模型请求,但高峰期时,用完快速高级积分的用户可能会被移到慢速池等待。若不想等待,可在设置页面添加更多请求。 4. 对话轮次:免费版本每小时的对话轮次有限制。 5. 费用:Pro 版本每月 20 美刀。 6. 注册要求:注册需要海外手机号。 7. 模型种类:免费用户可用 Claude 3 Sonnet 模型,订阅后可用 Opus 模型。
2024-10-26
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12
gpt-4和文心一言
GPT4 是由 OpenAI 开发的先进且广泛使用的大型语言模型,在多种任务上表现卓越,如文本生成、理解、翻译及专业和创意写作等,通过大量数据学习,能处理复杂问题和理解上下文。 文心一言是百度开发的语言模型,文心一言 4.0 有网页版和 API 版本。在 2023 年,百度的“文心 4.0”是国内能力较好的模型之一。 除了 GPT4 和文心一言,还有其他重要的大型语言模型,如 Anthropic 公司的 Claude 3、谷歌的 Gemini、阿里巴巴的通义大模型等。在 2023 年度中文大模型基准测评报告中,对众多模型进行了评测和列举。2023 年中美在 AGI 技术上仍有差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有差距。国内大厂在冲击 AGI 方面虽有资源,但实际效果尚不明确,且受多种因素影响。
2024-11-12
chatgpt 是什么
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。 其基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 它在生成文本方面表现出色,结果通常接近人类所产生的。但它最终是从积累的“传统智慧统计数据”中提取“连贯的文本线索”。 ChatGPT 目前有 GPT3.5 和 GPT4 两个版本。GPT3.5 是免费版本,GPT4 则需要升级到 PLUS 套餐,收费标准为 20 美金一个月。 ChatGPT 实质功能是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑需要通过材料学习不断形成模型,训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,可能会出现“幻觉”,混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,存在缺乏及时性和准确性的缺点。
2024-11-11
chatgpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本进行训练,以生成“类似”的文本。其基本概念相对简单,训练神经网络能够从“提示”开始,生成类似于训练内容的连贯人类语言文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”并通过其元素(无循环等)。然而,它能生成出色的文本,这表明人类语言(及背后的思维模式)的结构具有一定的“法律属性”,比想象中更简单,ChatGPT 已隐含地发现了这一点,或许我们可用语义语法、计算语言等明确揭示。 ChatGPT 在生成文本方面表现出色,接近人类所产生的,但它的工作方式与大脑并非完全相同。其基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。 在训练方面,大脑和当前计算机的“硬件”不同,ChatGPT 采用的策略可能与大脑有较大差异且效率较低,其内部没有“循环”或“重新计算数据”,限制了计算能力。目前尚不清楚如何解决此问题以让未来的 ChatGPT 能做更多类似大脑的事,但它已能做到的事情令人兴奋,为我们理解人类语言和思维过程提供了动力。 此外,还为您提供“10 分钟手搓一个 ChatGPT 语音对话机器人”的相关链接:https://b23.tv/JffIir4 。
2024-11-11
chatgpt入门
以下是关于 ChatGPT 入门的相关知识: ChatGPT 的实质功能可以用“词语接龙”四个字概括。具体来说,给它任意长的上文,它会用自己的模型生成下一个词。其通过自回归生成的方式,将生成的下一个词与之前的上文组合成新的上文,不断重复以生成任意长的下文。训练模型可以让答案更接近用户想要的答案,提示词的撰写也很重要。 ChatGPT 被称为生成模型,与搜索引擎不同。训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,以便在遇到没记忆过的提问时能生成用户想要的回答,即实现泛化。 ChatGPT 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始生成“类似于训练内容”的文本。其神经网络由简单元素组成,基本操作也简单,但能产生成功“类似于”网络、书籍等内容的文本。 GPT 代表生成式(Generative)、预训练(PreTraining)和转换器(Transformer)。 您还可以通过以下资源进一步了解: 大白话聊 ChatGPT: 人工智能教父 Hinton:关于 ChatGPT 与 AI 发展的 11 个核心观点: (进阶内容)
2024-11-11
你的原型是chatgpt吗
我不是基于 ChatGPT 开发的。ChatGPT 于 2022 年 11 月横空出世,背后基于 GPT3.5,其训练包括多个阶段,如预训练(PT)阶段建立模型的能力上限,监督微调(SFT)阶段让模型学会对话形式,强化学习从人类反馈(RLHF)阶段细分为奖励模型(RM)和强化学习(RL)阶段以激发多种能力。 此外,Hugging Face 推出了自己的 ChatGPT 版本,Stability AI 发布了 DeepFloyd IF 图像生成模型,效率和效果都有提升。AudioGPT 是一个能理解和生成语音、音乐等的系统,具有多种特点和应用领域。
2024-11-11
大模型排名以及排名的评测标准维度是什么
以下是一些常见的大模型排名及评测标准维度: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb: 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 斯坦福发布的大模型排行榜 AlpacaEval: 项目链接:https://github.com/tatsulab/alpaca_eval 排行榜链接:https://tatsulab.github.io/alpaca_eval/ 该研究团队选择了目前在开源社区很火的开源模型,还有 GPT4、PaLM 2 等众多「闭源」模型,甚至还开设了一个「准中文」排行榜。 AlpacaEval 分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在斯坦福的这个 GPT4 评估榜单中: GPT4 稳居第一,胜率超过了 95%;胜率都在 80%以上的 Claude 和 ChatGPT 分别排名第二和第三,其中 Claude 以不到 3%的优势超越 ChatGPT。 值得关注的是,获得第四名的是一位排位赛新人——微软华人团队发布的 WizardLM。在所有开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco。 而在开源模型中的佼佼者 Vicuna 发挥依然稳定,凭借着超过 70%的胜率排在第六,胜率紧追 Guanaco 65B。 最近大火的 Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 的技术细节: 人类一致性:标注者与交叉标注集中人类多数票之间的一致性。 价格:每 1000 个标注的平均价格。 时间:计算 1000 个标注所需的平均时间。相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 AlpacaEval 评估模型的方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 1. 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 2. 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 3. 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
2024-11-12
从0到1学习大模型知识
以下是从 0 到 1 学习大模型知识的相关内容: 什么是大模型: 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会对输入进行数字化形成词汇表。 大模型如何运作: 打个比方,“我今天吃了狮子头和蔬菜”这句话,在 transformer 中,会由 attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息会作为输入给到下一个 attention 层,最终哪些信息补充、保留、传递由模型自主学习。层与层之间就像人阅读文章时的连贯性注意力过程,大模型以词向量和 transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。这个过程像人脑阅读学习,记忆的不是逐字逐句,而是按相关性、重要程度结合历史经验,比如看到红色会觉得代表温暖、强烈。 大模型的整体架构: 从整体分层角度,大模型架构可分为以下几层: 1. 基础层:为大模型提供硬件支撑、数据支持,如 A100、数据服务器等。 2. 数据层:分为静态的知识库和动态的三方数据集,不是用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据。 3. 模型层:包括 LLm(largelanguagemodel,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等,训练数据与 llm 不同,用图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2024-11-12
在comyui中,使用flux1-dev模型24g显存够吗
在 ComfyUI 中使用 Flux1dev 模型,24G 显存是可以的,但建议内存尽量高于 32G 以避免意外情况的发生。如果您的显卡是 24G 或更高,右键 24G 那个 train_flux_24GLora 的文件。修改脚本路径和参数时,要注意底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径的正确填写。ae.safetensors 和 flux1dev.safetensors 的下载地址为:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ,百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。最后下载 dev 的工作流: ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI 把工作流或图片拖拽到其中即可。
2024-11-12
在comyui中,使用flux1-dev模型需要多少显存
在 ComfyUI 中使用 flux1dev 模型所需的显存情况如下: 相关模型的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址为:https://huggingface.co/Kijai/fluxfp8/tree/main 。 低显存方案(8G 以下):flux1devbnbnf4.safetensors ,放入 ComfyUI\\models\\checkpoints 文件夹内,下载链接为 https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 。 此外,还提供了以下相关资源链接: BitsandBytes Guidelines and Flux :https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
2024-11-12
怎么训练自己的小说大纲模型
训练自己的小说大纲模型可以参考以下步骤: 步骤一:创建数据集 1. 进入厚德云模型训练数据集,网址为:https://portal.houdeyun.cn/sd/dataset 。 2. 在数据集一栏中,点击右上角创建数据集。 3. 输入数据集名称。 4. 可以上传包含图片+标签的 zip 文件,也可以只有图片没有打标文件(之后可在 c 站使用自动打标功能)。 5. 也可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 6. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 7. 上传 zip 以后等待一段时间。 8. 确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 步骤二:Lora 训练 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 5. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 6. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 步骤三:Lora 生图 1. 点击预览模型中间的生图会自动跳转到这个页面。 2. 模型上的数字代表模型强度,可以调节大小,正常默认为 0.8,建议在 0.6 1.0 之间调节。 3. 也可以自己添加 lora 文件,点击后会显示训练过的所有 lora 的所有轮次。 4. VAE 不需要替换。 5. 正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图。 6. 选择生成图片的尺寸,横板、竖版、正方形。 7. 采样器和调度器新手小白可以默认不换。 8. 迭代步数可以按照需求在 20 30 之间调整。 9. CFG 可以按照需求在 3.5 7.5 之间调整。 10. 随机种子 1 代表随机生成图。 11. 所有设置都好了以后,点击开始生态,生成的图会显示在右侧。 12. 如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。 13. 如果确认了一张很合适的种子和参数,想要高清放大,则点开高清修复,可以选择想放大的倍数。新手小白可以就默认这个算法,迭代步数也是建议在 20 30 之间,重回幅度根据需求调整,正常来说在 0.3 0.7 之间调整。 今日作业 按照比赛要求,收集六个主题中一个主题的素材并且训练出 lora 模型后提交 lora 模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd 。 另外,直接在 Comfy UI 中训练 LoRA 模型的步骤如下: 1. 确保后面有一个空格。然后将 requirements_win.txt 文件拖到命令提示符中(如果在 Windows 上;否则,选择另一个文件 requirements.txt)。拖动文件将在命令提示符中复制其路径。 2. 按 Enter 键,这将安装所有所需的依赖项,使其与 ComfyUI 兼容。请注意,如果为 Comfy 使用了虚拟环境,必须首先激活它。 3. 教程: 图像必须放在一个以命名的文件夹中。那个数字很重要:LoRA 脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如 5。然后,下划线是必须的。 对于 data_path,必须写入包含数据库文件夹的文件夹路径。例如:C:\\database\\5_myimages ,必须写 C:\\database 。 对于参数,在第一行,可以从 checkpoint 文件夹中选择任何模型。据说必须选择一个基本模型进行 LoRA 训练。但也可以尝试使用微调。
2024-11-12
怎么训练自己的模型
训练自己的模型可以参考以下内容: 基于百川大模型: 选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。 在 Train 页面里,选择 sft 训练方式,加载定义好的数据集(如 wechat 和 self_cognition)。 注意学习率和训练轮次的设置,要根据数据集大小和收敛情况来调整。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的情况下,可以减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。 需要用到 xformers 的依赖。 显存占用约 20G 左右,训练时间根据聊天记录规模大小而定,少则几小时,多则几天。 训练自己的 AI 绘画模型(Stable Diffusion): 样本采样器(sample_sampler):可选择,默认是“ddim”。 保存模型格式(save_model_as):可选择,SD WebUI 兼容"ckpt"和"safetensors"格式模型。 训练流程主要包括: 训练集制作:数据质量评估、标签梳理、数据清洗、标注、标签清洗、增强等。 训练文件配置:预训练模型选择、训练环境配置、训练步数及其他超参数设置等。 模型训练:运行训练脚本,使用 TensorBoard 监控。 模型测试:用于效果评估与消融实验。 训练资源: Rocky 整理优化过的 SD 完整训练资源 SDTrain 项目,可通过关注公众号 WeThinkIn,后台回复“SDTrain”获取。
2024-11-12
国内有哪些AI出海产品
国内的 AI 出海产品有 ThinkAny、GenSpark、Devv 等。 在图像类 AI 产品方面,国内有可灵和通义万相。可灵由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高;通义万相是阿里旗下的工具,在中文理解和处理方面表现出色,用户可选择多种艺术和图像风格,操作界面简洁直观,且目前免费,但在某些方面存在局限性。 在 PPT 类 AI 产品方面,国内推荐爱设计 PPT,其背后有强大的团队,能敏锐把握市场机遇,已确立市场领先地位,能提高制作效率并保证高质量输出。
2024-11-12
国内文生图大模型,有哪些?
以下是一些国内的文生图大模型: 百度的文心一言:https://wenxin.baidu.com 抖音的云雀大模型:https://www.doubao.com 智谱 AI 的 GLM 大模型:https://chatglm.cn 中科院的紫东太初大模型:https://xihe.mindspore.cn 百川智能的百川大模型:https://www.baichuanai.com/ 商汤的日日新大模型:https://www.sensetime.com/ MiniMax 的 ABAB 大模型:https://api.minimax.chat 上海人工智能实验室的书生通用大模型:https://internai.org.cn 此外,真人效果卓绝的大模型 lofi.v2 也可用于生成真实场景下的字体。在使用 SDXL 大模型时,其分为 base+refiner 以及配套的 VAE 模型,base 用于文生图操作,refiner 用于细化生成的模型,VAE 用于调节图片效果和色彩。要在 webUI 中使用,需将秋叶启动器中 webUI 的版本升级到 1.5 以上,并将模型放入对应文件夹。
2024-11-12
像midjournal这样的国内外AI绘画社区
以下是为您介绍的像 Midjourney 这样的国内外 AI 绘画社区相关内容: Midjourney 是 AI 绘图领域家喻户晓的产品。其优点在于模型强大,能生成高质量图像,且支持充分的个性化设置。但使用过程不太便捷,需要通过 Discord 应用加入其频道或创建自己的频道并邀请 Midjourney 机器人才能生成图片。从学习难度来看,它的学习曲线较陡峭,在用户体验和易用性方面有待改进。 在“学社说明”中提到,大家一起收集和测试 AI 绘画提示词中的核心关键词,让新手规避无效探索,为相关从业人员节省时间。招募有 Midjourney 账号且喜欢 AI 绘画的人员,扫飞书二维码进群。根据关键词做创意,收录不错的作品。 在“AI 线上绘画教程”中提到,工作中需要大量图片时,AI 生图是高效的解决办法。主流的 Midjourney 付费成本高,Stable Diffusion 硬件门槛不低,但有像这样的免费在线 SD 工具网站。本教程旨在让入门玩家在半个小时内自由上手创作绘图。
2024-11-12
类似堆友,吐司这样的国内外AI生图
以下是为您整理的类似堆友、吐司的国内外 AI 生图产品: 国内: 阿里堆友 AI 反应堆:图像生成类产品。 图怪兽:资源类,4 月访问量 48.3 万 Visit,相对 3 月变化 0.299 。 美图秀秀 Meitu:图像编辑类,4 月访问量 47.9 万 Visit,相对 3 月变化 0.061 。 AI 抠图 pixian.ai:图像编辑类,4 月访问量 44 万 Visit,相对 3 月变化 0.176 。 佐糖:图像编辑类,4 月访问量 43.3 万 Visit,相对 3 月变化 0.071 。 我图网:图像生成类,4 月访问量 41.8 万 Visit,相对 3 月变化 0.012 。 文心一格:图像生成类,4 月访问量 41.5 万 Visit,相对 3 月变化 0.086 。 标智客 Ai Logo:图像生成类,4 月访问量 37.8 万 Visit,相对 3 月变化 1 。 可灵:由快手团队开发,主要用于生成高质量的图像和视频,图像质量高,最初采用内测邀请制,现向所有用户开放,价格相对较高,重度用户年费最高可达几千元,临时或轻度使用有免费点数和较便宜包月选项。 通义万相:在中文理解和处理方面表现出色,可从多种艺术和图像风格中选择,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,可与阿里其他产品和服务无缝整合,目前免费,每天签到获取灵感值,但存在一定局限性,如某些类型图像因国内监管要求无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容可能存在偏差。 国外:暂无相关具体产品信息。
2024-11-12
国内外大预言模型对比
以下是国内外大语言模型的对比情况: 1. 工具使用能力: 在工具使用的测评中,GPT4 Turbo 取得满分。 国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内第一。文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。超过 GPT3.5 的国内模型有 12 个。 开源模型中,Baichuan213BChat、Xverse13B2Caht 表现可圈可点,均超过 GPT3.5 以及众多闭源模型。总体来看,国内大模型在工具使用能力上表现优异,这与国内大模型厂商积极落地应用密不可分。 2. 主观和客观对比: 通过对比模型在主观简答题 OPEN 和客观选择题 OPT 上的不同表现,国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数。文心一言 4.0 和智谱清言表现相对稳定。 GPT4 Turbo 的表现最为稳定。 客观题相对主观题更容易通过题库形式进行训练和提升,同时由于客观题中包含中文特性问题,中文模型有一定优势,应综合来看模型的评测效果。 在本次测评中,国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。 3. 总体表现: GPT 4 Turbo 总分 90.63 分遥遥领先,高于其他国内大模型及国外大模型。国内最好模型文心一言 4.0有 4.9 分的差距。 过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat、阿里云的 Qwen72B、Yi 34BCha t 均优于 Llama213BChat。
2024-11-12
有没有国内网络能打开的免费好用的美术类AI工具?
以下为您推荐国内网络能打开的免费好用的美术类 AI 工具: 1. 扣子 + ByteArtist 网址:https://www.coze.cn/home 优点:不需要翻墙,无收费,可以直接生成 注册:手机号、抖音号或飞书号 操作步骤:需要在 coze 的 bot 里面添加绘图插件 时间:5min 2. 无界 AI 网址:https://www.wujieai.cc/ 优点:国内网络即可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用 希望这些工具能满足您的需求。
2024-11-11