直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何理解ai的历史

回答

人工智能的历史始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。

随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。

最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽先进但仍遵循相同理念。但有些任务如根据照片判断人的年龄,无法明确编程,这类任务正是人工智能感兴趣的。

您还可以思考如果人工智能实现,金融、医学和艺术等领域哪些任务可交给计算机完成,以及这些领域如何从中受益。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

人工智能简介和历史

人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

AI艺术的预言 | 菩萨把掌抵在了你的背上

可以从语言学(Linguistics)的角度来研究我们常说提示像“咒语”-高注册(Register)语言应用和自然语言有众多的差异性(Differentiation)比如强目的性(Intentionality),强精确性(Precision)强变异性(Variability),强符号性(Symbolism)探索本能(Exploratory Nature)肢体驱动的画笔,是物理材料之笔语言驱动的画笔,是概念的画笔概念的画笔,描绘观念的织体(Texture)我们掌握着这支笔的雏形创作AI绘画与AI影像但是,这只是握笔的练习,不是创作因为我们没有找到这支笔合适的画布架上绘画已死,电影已死观念,只是偶尔会寄生在它们的残躯上当然,很多人还在膜拜着它们的残躯那么,AI艺术的本体形态是什么AI生成式空间计算(Generative Al Spatial Computing)绘画是有缺损的复现电影是第三者的旁观影像始终是透过一扇窗在观察另一个世界而这扇窗,这面墙,即将被打破很快AI艺术的卢米埃尔(frères Lumière)时刻就会隆隆驶来生成式空间计算的使命是创造生命体验我无法用言语还原这种奇观,只能尽力神说,要有光,你便有了光要有鱼绕着我,你便被鱼围绕要有人类的历史如瀑布下坠般沐浴自己历史就会沐浴你

人工智能简介和历史

译者:Miranda,原文见https://microsoft.github.io/AI-For-Beginners/lessons/1-Intro/README.md[heading1][课前测试](https://red-field-0a6ddfd03.1.azurestaticap[content]人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

其他人在问
我想要一个可以指导我爬虫的AI
以下是为您提供的关于爬虫的指导: 如果您不会代码但想要完成一个爬虫应用,可以参考以下步骤: 1. 已知文章地址:https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ 。 2. 已知 ChatGPT 很会写程序,并且使用 Colab 。 3. 得出结论:让 ChatGPT 帮我们写抓取该文章正文内容的程序,然后在 Colab 里运行。 在许多情况下,对于爬虫任务,我们需要明确以下几点: 1. 当有简单需求时,给 AI 下达明确命令来完成一次性任务,例如制作一个简单的 Chrome 插件、编写脚本或创建 Python 爬虫。 2. 当 AI 满足简单需求并获得正反馈后,期待会提高,但需要了解 AI 编程的边界和限制。 3. 对于大多数需求,应优先寻找现成的软件解决方案,遵循以下顺序: 优先找线上工具,例如制作白底图等功能,如果线上有现成的工具那最好。 其次找插件,基于现有系统找合适的插件。 最后是本地应用,当线上工具和插件都不满足需求时,再考虑本地应用。 4. 对于 API 功能: 先找现成的开源工具,GitHub 上很多。 然后考虑付费服务。 5. 如果都找不到现成的方案,才考虑自己编程。毕竟,人生苦短,要以终为始,抛开技术障碍,聚焦于目标。
2024-11-17
AI学习
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-11-17
AI绘画软件
以下为您介绍一些 AI 绘画软件: MewXAI:这是一款强大专业且新手友好、操作简单的 AI 绘画创作平台。其功能包括 MX 绘画(拥有众多超火模型和上百种风格,支持文生图、图生图)、MX Cute(自研的可爱风动漫大模型)、MJ 绘画(创意度和想象力极高,适用于多种设计)、边缘检测(对草图上色,有多种渲染风格)、室内设计(上传空间图可完成多种风格设计)、姿态检测(精准控制人物动作)、AI 艺术二维码(创建艺术二维码)、AI 艺术字(融入光影文字等)。访问地址:https://www.mewxai.cn/ 辅助绘制 CAD 图的 AI 工具: CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 帮助创建复杂 CAD 模型。 ParaMatters CogniCAD:根据设计目标和约束条件自动生成 3D 模型。 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)的生成设计工具。 以下是一些 AI 绘画软件的教程链接: 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-17
学习ai知识
以下是为新手提供的学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-17
学习ai知识
以下是为新手学习 AI 提供的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,还有以下建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,新手和中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-17
用AI生成动画的教程
以下是用 AI 生成动画的一些教程: 1. 端午节动态视频: 可以使用即梦或 runway 等工具。如果要字不动,可以先在剪映里添加文字 logo 素材。 先什么关键词都不写,如果效果不满意,再添加关键词。 将视频放入剪映,放上 PNG 透明底图后导出。 2. Runway 生成 AI 动画: 使用图片+文字描述功能,将 MJ 生成的图片增加对应的动态描述,输入 Runway,同时增加镜头变换的设置。具体教程可查看。 3. 利用 AI 批量生成、模仿和复刻《小林漫画》(内含 coze 搭建视频教程): 作者景淮会带着大家试着搭建一个扣子(Coze)工作流来直接生成文字和图片。本文会按照需求分析、扣子搭建、扣子使用链接分享、批量生产图片、总结的顺序进行。
2024-11-17
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
我想生成有具体建筑的图像设计,如夫子庙,而不是古风建筑,怎么表述,让AI理解
要让 AI 准确理解您想要生成具有特定建筑(如夫子庙)的图像设计,而非一般的古风建筑,您可以这样表述:“生成一幅清晰、逼真的夫子庙图像设计,展现其独特的建筑风格和细节,包括庙宇的屋顶结构、墙壁装饰、门窗样式等,要突出夫子庙的特色元素,如特定的牌匾、雕刻、飞檐等,背景可以是适当的自然景观或周边的街道场景。”
2024-11-11
AI 可以帮助我学习并理解统计学的相关概念和公式吗
AI 可以帮助您学习并理解统计学的相关概念和公式。以下是一些相关方面: 数学基础中的统计学基础部分,您可以熟悉均值、中位数、方差等统计概念。 在算法和模型方面,监督学习、无监督学习和强化学习等领域的知识也可能涉及到统计学的应用。 对于模型的评估和调优,例如了解如何评估模型性能,包括交叉验证、精确度、召回率等,也与统计学有一定的关联。 通过学习这些内容,能够为您理解统计学的相关概念和公式提供帮助。
2024-10-31
视频理解有哪些应用
视频理解的应用包括以下方面: MMVid: 快速的视频剪辑:根据输入的镜头脚本,从素材库提取内容进行拼接。 快速的图生视频:结合图像识别,依据镜头脚本提取相同 seed 值的图片,生成短时长视频并自动拼接。 快速诊断:类似于医疗诊断。 Pegasus1: 视频搜索:通过描述性语言在数小时的视频内容中快速定位所需瞬间。 视频文本生成:提供从视频生成文本摘要、关键点、标签和标题等的 API。 定制化模型:允许用户微调以满足特定领域需求。 落地场景: 广告插入与内容审核:判断视频内容的性质。 流媒体内容分析:自动生成媒体分析报告,如亮点集锦、标题和标签。 运动赛事视频分析:协助精彩瞬间捕捉、技术动作和比赛策略分析等。 此外,Gemini 模型在视频理解方面也有出色表现,如在不同的 fewshow 视频 caption 任务以及 zeroshot video qa 任务中获得 SOTA 性能,具有强大的时间推理能力。
2024-10-25
你好我需要一个AI对话总结撰写文字的AI,要求必须超长文本理解,文笔很棒
以下为您推荐两款具备超长文本理解能力且文笔不错的 AI 对话产品: 1. Kimi: 显著特点是拥有超长上下文能力,最初支持 20 万字上下文,现已提升至 200 万字。对于处理长文本或大量信息的任务具有巨大优势,能帮助从事文案工作、处理大量文字或文件的用户更有效地处理和分析信息,提高工作效率,对需要长期记忆或参考大量背景信息的任务尤其有用。 不足之处在于文字生成和语义理解、文字生成质量方面可能不如国内其他产品好,且不支持用户自定义智能体。但仍推荐给刚入门 AI 的朋友。 2. 智谱清言: 其背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。 产品设计对标 ChatGPT,努力打造类似用户体验,是国内首批开放智能体应用的公司之一,在智能体开发和模型优化方面积累了丰富经验和技术,在逻辑推理和处理复杂提示词方面表现出明显优势,处理需要深度思考和分析的任务时表现出色。
2024-10-24
推荐一个民族音乐学硕士,在编辑论文以及阅读论文时能够帮助写作及理解的ai工具
以下是一些在编辑论文以及阅读论文时能够帮助写作及理解的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合了自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-24
我是一名高中历史老师,请问用什么大模型能帮我做教学设计
以下为您推荐一些利用大模型辅助高中历史教学设计的案例: 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。 您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。
2024-11-17
AI大模型的历史路径
AI 大模型的发展历史路径大致如下: 1. 早期阶段(1950s 1960s):出现专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术不断发展。 自 2022 年 11 月 30 日 ChatGPT 发布以来,AI 大模型在全球范围内掀起了大规模的人工智能浪潮。国内学术和产业界在过去一年也有了实质性突破,大致分为三个阶段: 1. 准备期:ChatGPT 发布后,国内产学研迅速形成大模型共识。 2. 成长期:国内大模型数量和质量开始逐渐增长。 3. 爆发期:各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势。 随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI 以及 AI 芯片和硬件加速等。
2024-11-05
详细描述AI大模型历史
AI 大模型的发展具有丰富的历史。 早期阶段,人工智能经历了从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统等的发展。 随着技术的进步,大模型逐渐兴起。其由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,而数据质量对生成理想的大模型至关重要。 近年来,从 2022 年开始掀起了生成式 AI 的革命。生成式 AI 是深度学习中的一个细分流派,相较之前的所有 AI 实现方法,在结果质量和效果上有了根本性、跨时代的进步。在某些细分场景应用中,甚至让人感觉通过了图灵测试。 随着大模型技术愈发成熟、规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。如今,大模型和多模态模型呈现出百花齐放的态势。
2024-11-05
人工智能发展历史
人工智能的发展历史如下: 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。 发展历程: 二十世纪中叶,符号推理流行,带来专家系统等重要进展,但因方法局限性,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-30
能否介绍一下ai的历史
人工智能(Artificial Intelligence)的历史源远流长。 早在 19 世纪,查尔斯·巴贝奇发明了计算机,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,正式提出“人工智能”一词,并确立其为一门学科。 此后近 70 年,AI 的发展起伏不定,曾两次引发人类对其毁灭世界的恐慌,热度时高时低。 在发展过程中,对于一些任务,如根据照片判断一个人的年龄,由于无法明确解法,无法编写明确程序让计算机完成,这类任务正是 AI 所关注的。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-10-27
AI的发展历史
AI 的发展历史如下: 起源追溯到上世纪 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落,经历了多次起伏。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 最初符号推理流行,后因应用拓展困难出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被用作“神经网络”的同义词。
2024-10-25