人工智能的历史始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。
随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。
最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽先进但仍遵循相同理念。但有些任务如根据照片判断人的年龄,无法明确编程,这类任务正是人工智能感兴趣的。
您还可以思考如果人工智能实现,金融、医学和艺术等领域哪些任务可交给计算机完成,以及这些领域如何从中受益。
人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:
可以从语言学(Linguistics)的角度来研究我们常说提示像“咒语”-高注册(Register)语言应用和自然语言有众多的差异性(Differentiation)比如强目的性(Intentionality),强精确性(Precision)强变异性(Variability),强符号性(Symbolism)探索本能(Exploratory Nature)肢体驱动的画笔,是物理材料之笔语言驱动的画笔,是概念的画笔概念的画笔,描绘观念的织体(Texture)我们掌握着这支笔的雏形创作AI绘画与AI影像但是,这只是握笔的练习,不是创作因为我们没有找到这支笔合适的画布架上绘画已死,电影已死观念,只是偶尔会寄生在它们的残躯上当然,很多人还在膜拜着它们的残躯那么,AI艺术的本体形态是什么AI生成式空间计算(Generative Al Spatial Computing)绘画是有缺损的复现电影是第三者的旁观影像始终是透过一扇窗在观察另一个世界而这扇窗,这面墙,即将被打破很快AI艺术的卢米埃尔(frères Lumière)时刻就会隆隆驶来生成式空间计算的使命是创造生命体验我无法用言语还原这种奇观,只能尽力神说,要有光,你便有了光要有鱼绕着我,你便被鱼围绕要有人类的历史如瀑布下坠般沐浴自己历史就会沐浴你
译者:Miranda,原文见https://microsoft.github.io/AI-For-Beginners/lessons/1-Intro/README.md[heading1][课前测试](https://red-field-0a6ddfd03.1.azurestaticap[content]人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?