AI 大模型的发展历史路径大致如下:
自 2022 年 11 月 30 日 ChatGPT 发布以来,AI 大模型在全球范围内掀起了大规模的人工智能浪潮。国内学术和产业界在过去一年也有了实质性突破,大致分为三个阶段:
随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI 以及 AI 芯片和硬件加速等。
5(关键进展)时间准备期成长期爆发期◼自2022年11月30日ChatGPT发布以来,AI大模型在全球范围内掀起了有史以来规模最大的人工智能浪潮。国内学术和产业界在过去一年也有了实质性的突破。大致可以分为三个阶段,即准备期(ChatGPT发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。故事的起点:ChatGPT发布国内迅速形成大模型共识
大家下午好!很荣幸能够作为本次活动的分享嘉宾,我是甲木,LangGPT团队成员,很高兴给大家带来《大模型商业化落地现状与思考》的分享。本次分享的内容主要分为五个模块,从大模型的背景入手、深入探讨其在商业领域的现状和应用。接着,我们将分析在商业化过程中所遇到的挑战,并分享一些实战经验,最后将展望AI作为通用技术能够发挥生产力效能所要经历的几个阶段。[heading2]一、大模型的背景和趋势[content]首先,我们先来看大模型的背景和发展趋势。关于AI的演进历程,很多媒体包括各类研究资料都已经做过详细的介绍,相信今天在座的各位对AI的基本情况都已有所了解,因此我不会过多赘述AI的演进历程。(有兴趣的小伙伴可以多从公开资料中查找一下~)我们的重点将放在大模型当前的应用能力上,随着大模型技术的愈发成熟,规模增大,大模型为AI Agent()提供强大能力。Agent+大模型将有望构建具备自主思考、决策和执行能力的智能体,进一步提升大模型的应用能力,广泛应用于多个行业和领域。
AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速