AI 大模型的发展具有丰富的历史。
早期阶段,人工智能经历了从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统等的发展。
随着技术的进步,大模型逐渐兴起。其由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,而数据质量对生成理想的大模型至关重要。
近年来,从 2022 年开始掀起了生成式 AI 的革命。生成式 AI 是深度学习中的一个细分流派,相较之前的所有 AI 实现方法,在结果质量和效果上有了根本性、跨时代的进步。在某些细分场景应用中,甚至让人感觉通过了图灵测试。
随着大模型技术愈发成熟、规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。如今,大模型和多模态模型呈现出百花齐放的态势。
大家下午好!很荣幸能够作为本次活动的分享嘉宾,我是甲木,LangGPT团队成员,很高兴给大家带来《大模型商业化落地现状与思考》的分享。本次分享的内容主要分为五个模块,从大模型的背景入手、深入探讨其在商业领域的现状和应用。接着,我们将分析在商业化过程中所遇到的挑战,并分享一些实战经验,最后将展望AI作为通用技术能够发挥生产力效能所要经历的几个阶段。[heading2]一、大模型的背景和趋势[content]首先,我们先来看大模型的背景和发展趋势。关于AI的演进历程,很多媒体包括各类研究资料都已经做过详细的介绍,相信今天在座的各位对AI的基本情况都已有所了解,因此我不会过多赘述AI的演进历程。(有兴趣的小伙伴可以多从公开资料中查找一下~)我们的重点将放在大模型当前的应用能力上,随着大模型技术的愈发成熟,规模增大,大模型为AI Agent()提供强大能力。Agent+大模型将有望构建具备自主思考、决策和执行能力的智能体,进一步提升大模型的应用能力,广泛应用于多个行业和领域。
AI模型及相关进展:讨论了AI模型的基础、最新进展,包括视频生成模型、相关论文,以及AI在诺奖和蛋白质研究领域的应用等。人工智能的发展历程与大语言模型人工智能发展历程:从图灵测试、早期的图灵机器人和ELISA,到IBM的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到OpenAI发布ChatGPT模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型的基石:大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,而数据的质量对生成理想的大模型至关重要。弱智8相关活动:针对弱智8的问题对大模型进行测试,还开展了让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进。大语言模型的特点:早期大语言模型回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景。
如果要将图1中那条起起落落的黄色曲线做更详细的说明,就是图2中展示的信息,这部分内容大家可以根据兴趣选择性阅读了解,要点我已列出,在此不做更多赘述。图2 AI发展经历的三个阶段2022年开始掀起的这一轮AI大模型革命,更准确的来说是生成式AI的革命(生成式AI,Generative artificial intelligence,简称GenAI),图3给出了关于生成式AI的更多技术解释,图片左边的文字可选择性阅读了解,我们更需要将注意力集中在图的右侧,理解这些概念之间的包含关系,即:人工智能是一个大而泛的概念,其中有一个流派叫做“机器学习”,而机器学习中涌现出一个分支,即应用了深度神经网络的机器学习,我们称之为“深度学习”,深度学习中又涌现出一个细分流派,就是这一轮大热的生成式AI。图3什么是生成式AI-1从结果(质量/效果)上看,生成式AI相较之前的所有AI实现方法,有了根本性的,跨时代的进步,做为AI应用的学习者,我建议你在理解这些概念的时候可以粗暴的做这样的划分:生成式AI和其他AI。因为在80年的AI发展史中,AI从未有一刻像现在如此像人,在某些细分场景应用中,我深刻的感受了“他”已经通过了图灵测试,激发起我内心深深的惊叹和敬畏!