直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

dify怎么使用

回答

Dify 有以下使用方式和相关信息:

  • 使用方式:
    • 云服务版本:直接在官网 dify.ai 上注册账号使用。
    • 部署社区版:开源,可商用,但不能作为多租户服务使用,对个人使用无限制。部署前提条件为 2 核 4G 云服务器一台(约 159 元),本地也可部署,但较折腾。
  • 构建知识库的具体步骤:
    • 准备数据:收集文本数据,包括文档、表格等格式,进行清洗、分段等预处理,确保数据质量。
    • 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好描述。
    • 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据需求选择,如需要更高准确度可选高质量模式。
    • 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集使用方式。
    • 持续优化:收集用户反馈,对知识库内容和索引方式持续优化和迭代,定期更新知识库。
  • 特点:
    • 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。
    • 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。
    • 允许定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。
    • 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。
    • 设计理念注重简单性、克制和快速迭代,为个人研究、创业团队、企业等提供支持和工具。
    • 官方手册:https://docs.dify.ai/v/zh-hans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【0门槛】一键部署自己的Dify网站

[title]【0门槛】一键部署自己的Dify网站本文纯干货,适合小白,有手就行,10分钟搭建属于自己的Dify网站,并配置模型进行使用。如果想学更多AI干货,欢迎关注。Dify有两种使用方式:1.云服务版本。直接在官网dify.ai上注册账号使用。2.部署社区版。开源,可商用,但是不能作为多租户服务使用。对个人使用完全无限制。部署前提条件:2核4G云服务器一台= 159元(不懂的也不用懂,不重要)其实本地也可以,但是本地更折腾,我自己不喜欢在自己电脑上部署Web服务,所以我也懒得给大伙分享。【小插曲】今天在腾讯云开新服务器的时候,发现腾讯云居然提供了一键部署,更简单了!而且看了下,挺便宜的,羊毛不薅白不薅。

问:Dify 构建知识库的具体步骤

[title]问:Dify构建知识库的具体步骤使用Dify构建知识库的具体步骤如下:1.准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。2.创建数据集:在Dify中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。3.配置索引方式:Dify提供了三种索引方式供选择:高质量模式、经济模式和Q&A分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。4.集成至应用:将创建好的数据集集成到Dify的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。5.持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。总的来说,Dify提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。内容由AI大模型生成,请仔细甄别

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

其他人在问
关于dify的提示词
以下是关于 Dify 提示词的相关信息: Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面以快速构建和部署生产级别的生成式 AI 应用。 其特点包括: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 具备全面的 RAG Pipeline 用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实,适用于创业团队构建 MVP、企业集成 LLM 增强现有应用能力以及技术爱好者探索 LLM 潜力。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。 一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐多种框架结合,效果更好。 此外,还为您提供了一些其他风格提示词和角色扮演的提示词示例: 1. 音乐风格提示词: Economic:指简洁高效的音乐风格,具有精简直接的特质,典型用于表现高效简洁情感的音乐作品,如 Ramones 的《Blitzkrieg Bop》,关联流派有 Punk、Pop、Indie。 Ecstatic:指狂喜极度兴奋的音乐风格,具有强烈欢快的情感,典型用于表现极度快乐兴奋情感的音乐作品,如 The Beatles 的《Twist and Shout》,关联流派有 Rock、Pop、Dance。 Edifying:指启发教化的音乐风格,具有教育启迪的特质,典型用于表现教育启迪情感的音乐作品,如 Bob Dylan 的《The Times They Are AChangin'》,关联流派有 Folk、Rock、Protest Music。 Editorial:指评论批判的音乐风格,具有评论社会文化的特质,典型用于表现社会评论批判的音乐作品,如 Green Day 的《American Idiot》,关联流派有 Punk、Rock、Alternative。 Educated:指知识性学术性的音乐风格,具有复杂深奥的特质,典型用于表现学术知识情感的音乐作品,如 Philip Glass 的极简主义作品,关联流派有 Classical、Minimalism、Experimental。 2. 角色扮演提示词: 魔术师:“我希望你是魔术师,帮我设计一个在聚会上表演的魔术。” 生活指导师:“为你的生活/工作提供建议和提示,比如如何改善人际关系。” 牙医:“我想让你当牙医。我将为您提供有关寻求牙科服务(例如 X 射线,清洁和其他治疗)的个人的详细信息。”
2024-10-31
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具。我说的是如何写提示词,才能让deepseek通过Function Calling调用工具。
要在 Dify 的 agent 的 prompt 里让 DeepSeek 通过 Function Calling 调用工具,您可以参考以下内容: 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入:将工具信息及使用工具的提示词添加到系统提示中。INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,可动态调整。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传:利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 2. 当模型判断需要调用工具函数时,检测到返回的 json 里 function_call 字段不为空,则执行异步函数调用,采用回调方式获取函数返回结果。通过判断返回的 functionCall 的名称执行不同函数并返回结果。 3. 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放 sys prompt、memory、user query;Tools 里放能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆在 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型交互,没有 tool_calls 标记则循环结束。Multi Agents 是更换 system prompt 和 tools。
2024-10-24
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具
在 Dify 的 agent 的 prompt 中实现调用工具的方法如下: 1. 提示词注入阶段: INSTRUCTION 为注入到系统提示中的字符串,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应使用无关紧要的工具作为示例,避免 LLM 混淆。 tools_instructions 是将通用的工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。 REUTRN_FORMAT 定义了调用 API 的格式。 2. 工具结果回传阶段: 利用正则表达式抓取输出中的“tool”和“parameters”参数。 对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。 通过识别 LLM 返回的调用工具的字典,提取对应的值,传入相应的工具函数,将工具返回的结果以 observation 的角色返回给 LLM。对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 此外,当模型判断需要调用工具函数时,即检测到返回的 json 里面 function_call 字段不为空,则执行异步函数调用,可通过判断返回的 functionCall 的名称来执行不同的函数并返回结果。 在提升可控性方面,有以下建议: 1. 放弃 JSON mode,虽然模型能力提升能输出 JSON,但仍会出错,且不能保证 100%正确,而模型厂家对 Function Calling 有微调优化。 2. 降低 System prompt 依赖,化繁为简,能在 Tools 里写的东西尽量写在里面。 3. API Response 增强 Prompt,这一步的准确率很高,可增加给大模型的约束和提示。 4. 尽量让模型做选择,而不是填空,减少 token 输出,提高速度和准确率。 5. 利用 Tools 来做 Route,构建 Multi Agent,术业有专攻。
2024-10-24
我想在云服务器部署使用 dify 和 comfyui ,云服务器机器配置需要什么要求呢
在云服务器部署使用 Diffy 和 ComfyUI ,云服务器机器配置要求如下: 1. 系统:Windows 7 以上。 2. 显卡要求:NVIDIA 独立显卡且显存至少 4G 起步。但 SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 硬盘:留有足够的空间,最低 100G 起步(包括模型)。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD(固态硬盘)上。 4. 内存:最低 32GB,越高越好,最低配会经常爆显存。 需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。如果您的电脑能顺畅清晰地玩 3A 游戏,那玩 WebUI 和 ComfyUI 通常也没问题。配置上不封顶,根据自己的需求和预算来选择即可。
2024-10-19
你知道dify吗
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 拥有功能丰富的提示词 IDE。 4. 具备全面的 RAG Pipeline,可用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能对应用程序的性能进行持续监控和优化。 Dify 提供云服务和本地部署选项,以满足不同用户的需求。其开源特性保证了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,能为创业团队构建 MVP、企业集成 LLM 增强现有应用能力以及技术爱好者探索 LLM 潜力提供相应支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果会更好。
2024-10-17
如何将COZE上的工作流复制下来JSON格式 给DIFY使用?
要将 COZE 上的工作流以 JSON 格式复制下来给 DIFY 使用,以下是一些相关的步骤和要点: 对于自动总结公众号内容并定时推送到微信的工作流: 循环查询文章是否推送过:包括数据库节点,用于在数据库中依据文章 URL 和用户的唯一标识(如重命名的 server 酱的 sendkey)判断是否推送过。需设置输出项「combined_output」,并注意 Coze 平台中数据库与 bot 绑定的设置方法。 循环体内容中的选择器:判断数据库查询结果是否为空,若为空则拼接文章完整信息。 对于 Coze 复刻吴恩达开源的 AI 翻译项目的工作流: 新建工作流并导入核心流程,分为初始翻译、反思优化、结果输出等部分。 开始节点选择翻译的源语言和目标语言,可设置其他参数。 初步的翻译大模型节点选择大模型和参考相关提示词。 对于用 Coze 免费打造微信 AI 机器人的工作流: 设计包括开始节点和结束节点,开始节点配置输入变量名、描述和变量类型。 知识库配置连接开始节点和知识库节点。 结束节点用于输出最终结果,设置回答格式和输出变量。 进行试运行测试。 请注意,具体的操作和配置可能因实际情况有所差异,需要根据您的具体需求和 COZE 平台的实际情况进行调整。
2024-10-15
AI Agent 规划是什么,怎么使用
AI Agent 规划是一个复杂但关键的概念,主要包括以下方面: 自行规划任务执行的工作流路径,适用于简单或线性流程的运行。例如,先识别男孩的姿势,再利用相关模型合成新的女孩图像,接着使用特定模型处理,最后进行语音合成输出。 包含子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标,以处理复杂任务。反思与改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 规划通常涉及五种主要方法: 任务分解:将复杂任务分解为简单子任务以简化问题,如 CoT(2022)、ReAct(2022)、HuggingGPT(2023)等。 多计划选择:生成多个备选计划并通过搜索算法选择最优计划执行,如 ToT(2023)、GoT(2023)、LLMMCTS(2023)。 外部模块辅助规划:引入外部规划器来提升规划过程,解决效率和可行性问题,如 LLM+P(2023)、LLMDP(2023)、DRRN(2015)。 反思与细化:通过反思和细化提高规划能力,纠正错误,如 Reflexion(2023)、CRITIC(2023)、SelfRefine(2023)。 记忆增强规划:利用额外记忆模块增强规划能力,存储有价值的信息,如 REMEMBER(2023)、MemoryBank(2023)。 在使用方面,AI Agent 的规划可以帮助其更高效、准确地完成任务,例如在多角色协作的场景中,不同角色的 Agent 相互协作,根据需求共同开发一个应用或者复杂程序。同时,OpenAI 的研究主管 Lilian Weng 提出了“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。
2024-11-05
如何注册使用claude
Claude AI 是一款由 Anthropic 公司开发的 AI 助手,是基于自然语言处理技术和人工智能算法的聊天机器人,以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名,利用先进的机器学习技术、自然语言处理和深度学习算法,为各种应用提供支持,包括但不限于数据分析、自动化和个性化辅助。 要注册 Claude.ai,可按以下步骤进行: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码完成邮箱验证。 如果在注册过程中遇到需要海外手机号接收验证码的问题,可能的解决方案有: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册您的 Claude 账号。 3. 如有海外朋友,可请他们帮忙接收验证码,并将验证码告知您。 完成注册后,若希望升级到 Claude Pro 版本以获取更强大的功能和更高的 API 调用限额,需要填写支付信息并选择一个合适的订阅计划。值得注意的是,订阅 Claude Pro 可能需要使用海外支付方式。 请注意,Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。若在注册过程中遇到问题,可参考其他用户分享的详细注册教程和解决策略。
2024-11-04
小白如何学习ai使用呢
对于小白学习 AI 的使用,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于技术纯小白用 AI 开发真正的应用,您可以参考以下经验: 1. 从小白学代码,看 AI 时代人类导师和硅基助教的协作之道: 像案例中作者的女儿,在 Claude 和作者的帮助下,用 Unity 开发了一个 RPG 小游戏。起初作者不相信纯小白能通过 AI 搞定 Unity 程序,但女儿通过让 Claude 教她做一个简单任务,明白了 Unity 里的基本概念。 开发过程有顺利也有挫折,挫折原因包括问题描述不清楚、AI 给的方案复杂、配置错误等。这让作者意识到小白需要通过 AI 能直接搞定的小项目,来先学明白背后的原理,在此基础上才能开发复杂项目。最好有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。 2. 基础小任务: 推荐从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑。这样可以学会必备的调试技能。 如果用的是 o1mini,可以在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果 windows 机器则是 create.cmd),足够勤勉的 o1mini 会为您生成一段超级长的代码,并给出提示,您只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。 3. 明确项目需求: 通过和 AI 的对话,来逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,这样的文档会包含影响技术方案选择的细节,比直接给 AI 一段口头的需求描述要准确得多。在后续开发的时候每次新起一个聊天就把文档发给 AI 并告知您现在在做第几点功能,会非常方便。
2024-11-04
如何使用AI
使用 AI 的方式多种多样,以下为您介绍一些常见的应用场景和方法: 在编程方面: 这两年 AI 发展迅猛,其作为编程助手能改变工作方式,提供实时建议和解决方案。在配置 AI 插件前,需先安装 python 的运行环境,具体步骤为:点击左上角的 File Settings Plugins Marketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 在阿里巴巴营销技巧和产品页面优化方面: 使用 AI 来完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术帮助选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果。 11. 库存管理:AI 帮助预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容。 在写课题方面: 利用 AI 技术辅助写作课题可按以下步骤进行: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题原创性,进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-04
RAG应该怎么使用呢
RAG(检索增强生成)是一种结合了检索和生成的技术,具有以下特点和使用流程: 特点: 可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。 能解决大语言模型在实际应用中的一些问题,如知识局限性、幻觉问题和数据安全性等。 使用流程: 1. 首先,给定一个用户的输入,如问题或话题。 2. RAG会从数据源(如网页、文档或数据库记录)中检索出与之相关的文本片段,这些片段称为上下文。 3. 将用户的输入和检索到的上下文拼接成一个完整的输入,并传递给大模型(如 GPT)。输入通常包含提示,指导模型生成期望的输出,如答案或摘要。 4. 最后,从大模型的输出中提取或格式化所需的信息,返回给用户。 此外,RAG 可以和微调结合使用,类似于为模型提供教科书,适用于模型回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新的语言、格式或样式。
2024-11-04
coze 工作流里的循环怎么使用
在 Coze 工作流中,循环的使用方法如下: 1. 左侧工具栏选择“循环”节点。这个节点主要由两部分组成:循环节点和循环体。整体逻辑是从循环节点设置循环次数和循环项,如果输入的是数组,循环次数就是数组的长度,类似于 for 语句,每次循环项就是数组中的值。说人话就是会根据您输入的内容自动判断循环几次,来使用循环体里的逻辑处理每一项。 2. 我们这里希望循环处理的逻辑是,对上一步中的每一篇内容在数据库中进行查询,如果查到了,证明之前推送过,本次工作流就不处理了,避免重复推送。如果没有查到,证明是一篇新的文章,继续工作流后边的内容。 3. 循环体内部——数据库节点:用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(也就是 server 酱的 sendkey,这里我们重命名为 suid 了)。因为这个 Bot 最开始设计的时候,就考虑到可能有多个用户会同时使用这个 Bot 设置公众号推送内容,每个用户设置的公众号内容可能不一样,每个用户的要推送的微信号肯定也不一样,所以这里使用 server 酱的 sendkey 作为了用户的唯一标识,重命名为了 suid。所以这里查询数据库需要两个值,文章 url 和用户的 suid,来判断这名用户的这篇文章是否推送过。SQL 语句是 AI 写的,直接复制就成。记得设置一下输出项“combined_output”。这步是必须项:Coze 平台的逻辑是数据库是与 bot 绑定的,所有如果要使用数据库功能,需要在 bot 中设置一个相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。 4. 循环体内容——选择器:判断数据库查询的内容是否为空,如果是空,证明数据库中没有查到,这篇文章没有给这名用户推送过,使用“文本处理”节点,拼接这篇文章的完整信息,保证信息一致性。string1:开始节点的 key,也就是 server 酱的 sendkey,用来识别用户;string2:循环节点 item 值中的 url;string3:循环节点 item 值中的 title;string4:循环节点 item 值中的 author。拼接为如下格式,方便输出,并让后边节点使用。右下方的“文本处理”节点没有实际作用,输入项随便写,主要是为了处理数据库查询到已经给这名用户推送过这篇文章情况下的占位项,否则工作流会报错。设置循环节点输出项,选择循环体中“输出新文章内容”拼接后的字符串。 此外,在大模型组件中,批处理,也就是迭代处理,允许我们对集合或数组中的每个元素进行批量处理。这种处理方式通过依次遍历集合或数组,使得每个元素都能经过相同的处理流程。批处理的关键在于其能够通过有限循环实现高效的数据处理。批处理中,我们可以设置循环次数,也就是迭代的次数。例如,在 Coze 的大模型组件中,最多可以支持 200 次的循环,这相当于一个 200 次的 for 循环,允许我们对 200 个元素进行连续的处理。此外,批处理还涉及到并发量的问题。这里的并发量指的是在单次迭代中同时处理的元素数量。通过调整并发量,我们可以在一次循环中同时处理多个元素,从而提高处理效率。例如,如果集合中有 200 个元素,我们可以设置每次同时处理 5 个元素,这样只需要 40 次循环就可以完成整个集合的处理。
2024-11-03