直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何将COZE上的工作流复制下来JSON格式 给DIFY使用?

回答

要将 COZE 上的工作流以 JSON 格式复制下来给 DIFY 使用,以下是一些相关的步骤和要点:

对于自动总结公众号内容并定时推送到微信的工作流:

  • 循环查询文章是否推送过:包括数据库节点,用于在数据库中依据文章 URL 和用户的唯一标识(如重命名的 server 酱的 sendkey)判断是否推送过。需设置输出项「combined_output」,并注意 Coze 平台中数据库与 bot 绑定的设置方法。
  • 循环体内容中的选择器:判断数据库查询结果是否为空,若为空则拼接文章完整信息。

对于 Coze 复刻吴恩达开源的 AI 翻译项目的工作流:

  • 新建工作流并导入核心流程,分为初始翻译、反思优化、结果输出等部分。
  • 开始节点选择翻译的源语言和目标语言,可设置其他参数。
  • 初步的翻译大模型节点选择大模型和参考相关提示词。

对于用 Coze 免费打造微信 AI 机器人的工作流:

  • 设计包括开始节点和结束节点,开始节点配置输入变量名、描述和变量类型。
  • 知识库配置连接开始节点和知识库节点。
  • 结束节点用于输出最终结果,设置回答格式和输出变量。
  • 进行试运行测试。

请注意,具体的操作和配置可能因实际情况有所差异,需要根据您的具体需求和 COZE 平台的实际情况进行调整。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)

[title]【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)[heading2]三、搭建工作流[heading3]6、循环查询文章是否推送过循环体内部——数据库节点数据库节点:用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的url和开始节点的key(也就是server酱的sendkey,这里我们重命名为suid了)因为这个Bot最开始设计的时候,就考虑到可能有多个用户会同时使用这个Bot设置公众号推送内容,每个用户设置的公众号内容可能不一样,每个用户的要推送的微信号肯定也不一样,所以这里使用server酱的sendkey作为了用户的唯一标识,重命名为了suid所以这里查询数据库需要两个值,文章url和用户的suid,来判断这名用户的这篇文章是否推送过SQL语句是AI写的,直接复制就成记得设置一下输出项「combined_output」这步是必须项:Coze平台的逻辑是数据库是与bot绑定的,所有如果要使用数据库功能,需要在bot中设置一个相同名称和数据结构的数据库进行绑定,具体设置方法参见「相关资源」循环体内容——选择器判断数据库查询的内容是否为空,如果是空,证明数据库中没有查到,这篇文章没有给这名用户推送过,使用「文本处理」节点,拼接这篇文章的完整信息,保证信息一致性string1:开始节点的key,也就是server酱的sendkey,用来识别用户string2:循环节点item值中的urlstring3:循环节点item值中的titlestring4:循环节点item值中的author拼接为如下格式,方便输出,并让后边节点使用右下方的「文本处理」节点没有实际作用,输入项随便写,主要是为了处理数据库查询到已经给这名用户推送过这篇文章情况下的占位项,否则工作流会报错设置循环节点输出项,选择循环体中「输出新文章内容」拼接后的字符串

Coze 复刻:吴恩达开源的 AI 翻译项目,简单几步提升 AI 翻译质量

[title]Coze复刻:吴恩达开源的AI翻译项目,简单几步提升AI翻译质量[heading1]复刻步骤首先,我们在Coze上新建一个工作流,逐步导入吴恩达项目的核心流程。整个工作流分为若干个节点,每个节点完成一个特定的任务。通过将这些节点组合起来,就形成了一个完整的翻译流程。我们先来看看导入后的整体工作流,以及它的测试效果。我们可以看到,工作流被分为了初始翻译、反思优化、结果输出几个主要部分,每一部分都对应了若干个节点。当我们运行测试的时候,可以清晰地看到每个节点的执行过程和结果。给大家展示一下测试的效果,我们输入一段英文,让工作流自动翻译成中文。这样一对比,优化后的翻译感觉就好多了,语句通顺了很多,用词也更加准确贴切,整体的翻译质量有了不少的提升。接下来,我就对每个节点的配置做一个核心讲解,让大家学会如何根据自己的需求来定制翻译流程。1.首先是开始节点,在这里我们需要选择翻译的源语言和目标语言,比如英语到中文。我们还可以设置一些其他参数,比如翻译的语言特色等,这个参数会影响翻译的效果和效率,不过我将其作为可选选项,建议根据实际情况进行调整。1.接下来是初步的翻译大模型节点,这里我们需要选择一个大模型,来对源语言文本进行初始翻译,这样才好对比并且以此作为进一步的反思优化。Coze平台提供了多种AI大模型选择,这里我直接选了MiniMax,然后提示词我们就直接参考吴恩达教授的相关内容即可。提示词:1.接下来就是选择器节点,因为我们需要判断用户填写的要求中有没有需要特别的语言翻译特色或者口音,如下图:

「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人

[title]「AI学习三步法:实践」用Coze免费打造自己的微信AI机器人[heading2]📝搭建步骤详解[heading3]3️⃣设计你的AI机器人[heading4]2、确定功能范围[heading5]5)【工作流】设计详细说明:如果懂点代码的朋友会比较容易理解,不懂代码也没关系,按照下面步骤操作即可。a.开始节点和结束节点,coze会自动生成;b.开始节点配置:输入变量名写:Question,描述写:用户输入的问题,变量类型选:Stringc.知识库配置:将【开始节点】和【知识库左侧节点】连接起来,这样知识库就可以调用开始节点的内容了;知识库输入:引用,开始节点的变量“Question”;知识库部分点击“+”号,选择之前创建好的知识库;将【知识库右侧节点】与【结束节点】的左侧连起来;d.结束节点配置:结束节点用于输出AI机器人的最终结果,这我们的回答格式设置为:您的问题:{{question}}问题的答案:{{answer}}所以在输出变量那里,定义2个参数:question引用“开始节点的Question”answer引用“知识库节点的输出output”回答模式选择:使用设定的内容直接回答。e.试运行测试点击右上角“试运行”后,输入想问AI机器人的问题,比如:AIGC课件,点击右下角“运行”,然后就可以看到工作流每一步的详细输入和输出。

其他人在问
在coze创建一个符合我需求的智能体(带工作流)之前,需要梳理什么内容
在 Coze 创建一个符合需求的智能体(带工作流)之前,需要梳理以下内容: 1. 规划: 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 例如,在搭建“结构化外文精读专家”Agent 时,要从制定关键方法与流程开始梳理任务目标。另外,搭建整理入库工作流时,新建工作流“url2table”,包括开始节点输入 url(无需额外配置)、变量节点引入 bot 变量中保存的飞书多维表格地址、插件节点获取页面内容等。
2024-12-21
我需要在coze创建一个符合我需求的智能体(带工作流)全流程,要求流程完整(从创建之前的工作)
以下是在 Coze 创建一个符合您需求的智能体(带工作流)的全流程: 1. 打开 Coze 官网 https://www.coze.cn/home ,注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料,表格可存储结构化数据,照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息,数据库可管理持久化的结构化数据,长期记忆可保存重要的历史对话信息,文件盒子可管理各类文档资料。 交互优化(底部区域):开场白可设置初次对话的问候语,用户问题建议可配置智能推荐的后续问题,快捷指令可设置常用功能的快速访问,背景图片可自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 4. 创建图像工作流: 图像流分类:图像流分为智能生成、智能编辑、基础编辑三类。Coze 的图像流很像 ComfyUI,但是比 ComfyUI 更普世化,更简单易上手。 空间风格化插件:空间风格化插件有个参数,image_url 就是毛坯房的图片地址;Strength 提示词强度,就是提示词对效果图的影响度;Style 生成效果的风格,比如新中式、日式、美式、欧式、法式等等。 工作流流程:按照构架配置工作流,调试工作流,毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点解析:开始节点就对应配置三项内容,提示词优化。 5. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求,自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url,由于希望收到用户输入的待收藏 url,就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的 url,则交由外层 bot 的大模型判断)。 变量节点:引入 bot 变量中保存的飞书多维表格地址,为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容,这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为 60000。 6. 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布,机器人就可以不知疲倦地给您出图了。
2024-12-21
帮我梳理coze创建一个符合我需求的带工作流的智能体全流程,要求流程完整
以下是用 Coze 创建带工作流的智能体的全流程: 1. 打开 Coze 官网(https://www.coze.cn/home)。 2. 创建图像工作流: 图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试效果,可使用调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,包括提示词优化。 人设和回复逻辑中,技能 1 中 3 项中的编译数字来源,然后点击右上角发布。 3. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 3.1 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 3.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,将链接存储在 bot 的变量中,并在工作流运行时进行引用。 3.3 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-12-21
帮我梳理coze创建一个带工作流的智能体的全流程
以下是用 Coze 创建带工作流的智能体的全流程: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 打开 Coze 官网 https://www.coze.cn/home 。 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行智能体,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 在创建图像工作流方面: 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流效果,调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,进行提示词优化。 配置好人设和回复逻辑,然后点击右上角发布,机器人就可以出图。
2024-12-21
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么加入coze 通往AGI之路 团队
要加入 Coze 通往 AGI 之路团队,您可以按照以下步骤进行: 1. 5 月 7 号: 创建 https://www.coze.com 账号。 创建 https://www.coze.cn 账号。 加入共学的 team(看第三列备注)。 有精力的话,可以提前阅读:。 尝试创建自己的第一个 Bot,用来免费使用 GPT4(海外版本)。 Click the link to join my team WaytoAGI on the Coze Bot Platform 👉🏻https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P(海外版本)。 coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY(国内版本)。 2. 5 月 10 号:罗文认领一个插件制作插件说明,可参考。 PS:上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。 此外,共学已结束,您也可以自行查看教程学习,比如课程表。欢迎邀请您加入 Coze 扣子团队 AI Bot:通往 AGI 之路。可以看到大家历史捏的 bot:coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。 第一期:COZE 的搭建,活动起源是之前在社区里搞了一期,大家反馈都不错,希望有更多一起学习的机会。最近对于 agent 搭建的呼声很大,刚好有几个对 coze 很熟悉的小伙伴出了一些教程,于是有了这一期的主题共学快闪。大家可以先进群,邀请您加入我的 Coze 扣子团 AI Bot:通往 AGI 之路。coze.com 👉🏻https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P ,coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。活动的方式包括自学(这个活动希望通过文字资料+直播分享的方式带领大家了解 Coze 这款工具,但是主要还是要靠自学)、写作业(会留一些作业,帮助大家更好复盘看看有没有吸收知识点。看十遍不如实践一遍)、互助(在飞书群大家有问题可以互助)、交流(找一些 Coze 的玩家跟大家视频会议交流自己的入门和进阶心得)。
2024-12-19
怎么部署dify到ecs
部署 Dify 到 ECS 有以下几种方法: 方法一:通过云服务器、Dify 和智能微秘书免费搭建微信机器人 参考链接:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 这些命令在宝塔面板的终端安装。dockercompose 文件在 /root/dify/docker 目录下,可修改和学习其中文件的含义。 检查运行情况,使用 docker compose ps 命令,如果 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 来解决。 在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉后面的:8888),随便填邮箱密码建立知识库,选择模型(如智谱 AI,获取钥匙并复制保存),创建应用进行测试和发布。 方法二:腾讯云一键部署 打开腾讯云官网,在左上角【最新活动】进入,新老用户均可享受优惠。 Dify 社区版官方要求 2 核 4G,可根据需求选择境内或境外服务器。境内服务器 159 一年。 选好后创建服务器,选择【使用应用模板创建】【AI】,初始化完成后,在控制台服务器中复制公网 IP 到浏览器(加上 /apps),进入 Dify 安装页面,设置管理员账号密码,正常情况下即可进入 Dify 网站配置模型服务。 方法三:云服务器 Docker 部署 左侧菜单栏文件打开终端,根据 Dify 官方的部署文档操作。 敲入 git 命令(把 Dify 的代码复制到服务器),显示 100%即复制完成。 依次敲下面三个命令,出现相应结果即为成功。 使用方法与方案一相同。 更新时根据官方文档,在 BT 页面的文件中打开终端,按顺序执行命令。同时注意同步环境变量配置,如果.env.example 文件有更新,务必同步修改本地的.env 文件,检查并确保配置项与实际运行环境相匹配。
2024-12-18
dify是什么
Dify 是一个开源的大模型应用开发平台。它具有以下特点和功能: 1. 理念创新:结合后端即服务和 LLMOps 的理念。 2. 直观界面:为用户提供直观的界面,能快速构建和部署生产级别的生成式 AI 应用。 3. 强大工具:具备强大的工作流构建工具,支持广泛的模型集成,提供功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。 4. 智能体支持:允许用户定义 Agent 智能体。 5. 性能优化:通过 LLMOps 功能对应用程序的性能进行持续监控和优化。 6. 部署灵活:提供云服务和本地部署选项,满足不同用户需求。 7. 开源优势:通过开源特性,确保对数据的完全控制和快速的产品迭代。 8. 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 9. 适用范围:无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都能提供相应的支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-11-29
dify教程
以下是关于 Dify 的相关教程: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 部署自己的 Dify 网站: Dify 有两种使用方式:云服务版本,直接在官网 dify.ai 上注册账号使用;部署社区版,开源,可商用,但不能作为多租户服务使用,对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台 = 159 元。
2024-11-22
咱们有dify的好的实践教程或示例吗
以下是关于 Dify 的一些实践教程和相关信息: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 构建知识库的具体步骤: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 介绍:Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-11-22
dify是啥
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点和优势: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 具备全面的 RAG Pipeline,用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。对于个人研究,推荐单独使用;对于企业级落地项目,推荐多种框架结合,效果更佳。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2024-11-15
还有没有类似语聚ai,扣子,Dify.A,腾讯元器、客悦等智能体创建平台
以下是为您介绍的一些类似语聚 AI、扣子、Dify.AI、腾讯元器、客悦等的智能体创建平台: 智能体是随着 ChatGPT 与 AI 概念爆火而出现的新名词,简单理解就是 AI 机器人小助手,类似移动互联网中的 APP 应用。目前有很多公司关注智能体在 AI 应用层的产品机会,比如在 C 端有社交方向的应用,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;在 B 端,有帮助商家搭建智能体的机会。 国内有不少智能体开发平台,如字节的扣子,2 月 1 日字节正式推出其国内版,主要用于开发下一代 AI 聊天机器人。此外,还有 Dify.AI 等平台。像阿里的魔搭社区也属于此类平台。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,完成后还可发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-11-08
msql怎么实现复杂json某个key值替换
在MySQL中处理JSON数据时,可以使用`JSON_REPLACE`函数来替换JSON对象中的某个键(key)的值。这个函数允许你指定JSON列、要替换的键以及新的值。 以下是`JSON_REPLACE`函数的基本语法: ```sql JSON_REPLACE ``` `json_column`:包含JSON数据的列。 `path`:指定要替换的键的路径,格式为`$.key`或`$.index`,其中`key`是键的名称,`index`是数组中的索引。 `replace_value`:用于替换的新值。 如果JSON数据结构比较复杂,例如嵌套的JSON对象,你需要提供正确的路径来定位到需要替换的键。 示例: 假设你有一个名为`users`的表,其中包含一个名为`user_info`的JSON类型的列,结构如下: ```json { "name": "John", "details": { "age": 30, "address": { "street": "123 Main St", "city": "Anytown" } } } ``` 如果你想替换`address`对象中的`city`键的值,你可以使用以下SQL语句: ```sql UPDATE users SET user_info = JSON_REPLACE WHERE id = 1; 假设你要更新ID为1的记录 ``` 这条语句会将`user_info`中`details`对象下的`address`对象的`city`键的值替换为`'New City'`。 如果你要替换的键不存在,`JSON_REPLACE`函数会添加这个键,并赋予指定的新值。 请注意,使用`JSON_REPLACE`函数时,确保你的MySQL版本支持JSON函数(MySQL 5.7.8及以上版本)。此外,正确地指定路径非常重要,以避免错误地修改JSON结构中的其他部分。
2024-05-21
AI 提示词如何写的更好?应该使用什么格式书写?
以下是关于如何写好 AI 提示词及格式的相关内容: 1. 陶力文律师的观点: 结构化内容组织:使用编号、子标题和列表来组织文章,使内容条理清晰,易于读者理解。 规定概述内容解读结语结构:围绕主题展开讨论,首先概述规定内容,然后逐条解读具体内容,并以结语结束。 案例和挑战的结合:通过引入实际案例和潜在挑战,增强论点的说服力,并提供实用的解决方案。 结合法规和实际操作:通过引入法规内容和实际操作案例,提供详细的解释和建议。 商业术语的使用:在写作中融入行业特定的术语和概念,确保内容的专业性和针对性。 输出的文章结构: 标题:开门见山、切中要害,用疑问句引起目标群体悬念。 第一部分:说清楚本文要解决的问题是什么,问题的背景是什么,这个问题可能导致哪些损失。 第二部分:以一个案例引入,这个案例改写自【基础材料】的【类案参考】部分,需要写清楚案号、案件事实经过、法院裁判结果、法院作出这一裁判结果的关键依据和其他与文章有关的要点。 第三部分:对案例进行进一步的分析,写明需要注意的关键点,分析可以改写自【基础材料】的【问答结果及分析】部分,这部分不要给建议。 第四部分:给出具体的操作建议,应分为:事前应注意事项;事中需要注意留存的证据;事后可以采取的补救措施,三个部分;每个部分分别给出三条清晰具体的建议。 2. 潘帅的观点: Prompt 指的是给人工智能(AI)系统提供的信息或者问题,用来引导 AI 产生特定的回答或者执行特定的任务。 Prompt 的建议框架及格式: CRISPE: Capacity and Role(能力与角色):比如,你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):比如,处理一起复杂的合同纠纷案件,我们可以向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):比如,直接明确期望 AI 完成的任务是什么。以合同纠纷案件为例,我们可以要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):比如,你希望 AI 以什么风格或方式回答你。 Experiment(举例)。 3. 陈财猫的观点: 一个效果很好的 prompt 不需要很多奇怪的格式,自然语言是最好的方式,人好懂,机器就好懂。 厂商有在前端显示排版的需求,模型会比较熟悉 markdown,写点 markdown 是不错的。Claude 对 xml 格式做了点优化,GPT 对 json 做了点优化等等。
2024-12-18
编写一个python代码其中附件是一个名为data.csv的CSV格式文件,提取表格中数据,行列保持一致进行如下格式转换:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬ (1)按行进行倒序排列;‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫
以下是一个使用 Python 实现读取 CSV 文件并按行倒序排列的代码示例: ```python import pandas as pd 读取 CSV 文件 data = pd.read_csv 按行倒序排列 reversed_data = data.iloc 打印结果 print ``` 在上述代码中,首先使用 `pandas` 库的 `read_csv` 函数读取 `data.csv` 文件,然后使用 `iloc` 索引和切片操作 `` 实现按行倒序排列。
2024-12-12
完善程序实现格式化输出a,b,c=‘唐代’,‘将近酒’,‘李白’ print(' '.fomat(a,b,c))
您提供的程序存在一些错误。正确的实现方式应该是: ```python a = '唐代' b = '将近酒' c = '李白' print ``` 这样就可以实现格式化输出这三个变量的值了。
2024-12-09
我想将一个图片的格式色调,复制到另一张图片,不改变图片绘制内容,应该用什么
以下是一些可用于将一张图片的格式色调复制到另一张图片而不改变绘制内容的方法和工具: 1. ComfyUI_LayerStyle 插件: 添加 节点,可自动调整图片色调。 将 LUT 应用到图像: 支持.cube 格式的 LUT 文件。 节点选项包括 LUT 选择、色彩空间选择等。 自动调整图片的亮度、对比度和白平衡,可手动调整强度及各通道参数。 改变图像的色温、色彩平衡、色阶和 Gamma 值等。 2. 其他可能的方法: 某些专业的图像处理软件,如 Adobe Photoshop 等,可能具有相应的功能来实现色调复制。 您可以根据具体需求和使用习惯选择适合的方法和工具。
2024-12-09
请将以下提示词改写为markdown格式:“请为我生成一个五子棋游戏的代码,其中,棋盘的大小是10*10”
以下是为您改写的 Markdown 格式的提示词: ``` 请为我生成一个五子棋游戏的代码,其中,棋盘的大小是 1010 ```
2024-12-06
ai可以修改文件格式吗
AI 可以修改文件格式。以下是一些相关的情况和示例: 在游戏开发与修改方面,对于复杂游戏,可能因稳定性需要拆分,修改主要集中在 js 格式文件,其他文件改动较少。可以使用文本编辑器修改如 html、CSS、js 等格式的游戏文件,并在本地保存,还能推送到 GitHub 等平台。同时,游戏开发中三个重要文件需在一个文件夹,本地内置图像、音乐等也需在同一文件夹。 以前软件公司通过设计专有文件格式锁定用户,现在 AI 发展可将一个软件的输出文件格式转换为另一个软件支持的输入文件格式,消除了用户软件切换成本。例如 Fillout 公司利用 AI 开发表单导入器,降低用户切换软件难度。 对于文章排版,有多种 AI 工具可供选择。如 Grammarly 不仅能检查语法和拼写,还提供排版功能;QuillBot 可改进文本清晰度和流畅性;Latex 常用于学术论文排版,有许多 AI 辅助的编辑器和插件;PandaDoc 适用于商业和技术文档;Wordtune 能重新表述和改进文本;Overleaf 是在线 Latex 编辑器,提供模板和协作工具。选择工具取决于具体需求,如文档类型、出版标准和个人偏好。
2024-12-05