Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze 工作流里的循环怎么使用

Answer

在 Coze 工作流中,循环的使用方法如下:

  1. 左侧工具栏选择“循环”节点。这个节点主要由两部分组成:循环节点和循环体。整体逻辑是从循环节点设置循环次数和循环项,如果输入的是数组,循环次数就是数组的长度,类似于 for 语句,每次循环项就是数组中的值。说人话就是会根据您输入的内容自动判断循环几次,来使用循环体里的逻辑处理每一项。
  2. 我们这里希望循环处理的逻辑是,对上一步中的每一篇内容在数据库中进行查询,如果查到了,证明之前推送过,本次工作流就不处理了,避免重复推送。如果没有查到,证明是一篇新的文章,继续工作流后边的内容。
  3. 循环体内部——数据库节点:用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(也就是 server 酱的 sendkey,这里我们重命名为 suid 了)。因为这个 Bot 最开始设计的时候,就考虑到可能有多个用户会同时使用这个 Bot 设置公众号推送内容,每个用户设置的公众号内容可能不一样,每个用户的要推送的微信号肯定也不一样,所以这里使用 server 酱的 sendkey 作为了用户的唯一标识,重命名为了 suid。所以这里查询数据库需要两个值,文章 url 和用户的 suid,来判断这名用户的这篇文章是否推送过。SQL 语句是 AI 写的,直接复制就成。记得设置一下输出项“combined_output”。这步是必须项:Coze 平台的逻辑是数据库是与 bot 绑定的,所有如果要使用数据库功能,需要在 bot 中设置一个相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。
  4. 循环体内容——选择器:判断数据库查询的内容是否为空,如果是空,证明数据库中没有查到,这篇文章没有给这名用户推送过,使用“文本处理”节点,拼接这篇文章的完整信息,保证信息一致性。string1:开始节点的 key,也就是 server 酱的 sendkey,用来识别用户;string2:循环节点 item 值中的 url;string3:循环节点 item 值中的 title;string4:循环节点 item 值中的 author。拼接为如下格式,方便输出,并让后边节点使用。右下方的“文本处理”节点没有实际作用,输入项随便写,主要是为了处理数据库查询到已经给这名用户推送过这篇文章情况下的占位项,否则工作流会报错。设置循环节点输出项,选择循环体中“输出新文章内容”拼接后的字符串。

此外,在大模型组件中,批处理,也就是迭代处理,允许我们对集合或数组中的每个元素进行批量处理。这种处理方式通过依次遍历集合或数组,使得每个元素都能经过相同的处理流程。批处理的关键在于其能够通过有限循环实现高效的数据处理。批处理中,我们可以设置循环次数,也就是迭代的次数。例如,在 Coze 的大模型组件中,最多可以支持 200 次的循环,这相当于一个 200 次的 for 循环,允许我们对 200 个元素进行连续的处理。此外,批处理还涉及到并发量的问题。这里的并发量指的是在单次迭代中同时处理的元素数量。通过调整并发量,我们可以在一次循环中同时处理多个元素,从而提高处理效率。例如,如果集合中有 200 个元素,我们可以设置每次同时处理 5 个元素,这样只需要 40 次循环就可以完成整个集合的处理。

Content generated by AI large model, please carefully verify (powered by aily)

References

【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)

[title]【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)[heading2]三、搭建工作流[heading3]6、循环查询文章是否推送过循环体内部——数据库节点数据库节点:用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的url和开始节点的key(也就是server酱的sendkey,这里我们重命名为suid了)因为这个Bot最开始设计的时候,就考虑到可能有多个用户会同时使用这个Bot设置公众号推送内容,每个用户设置的公众号内容可能不一样,每个用户的要推送的微信号肯定也不一样,所以这里使用server酱的sendkey作为了用户的唯一标识,重命名为了suid所以这里查询数据库需要两个值,文章url和用户的suid,来判断这名用户的这篇文章是否推送过SQL语句是AI写的,直接复制就成记得设置一下输出项「combined_output」这步是必须项:Coze平台的逻辑是数据库是与bot绑定的,所有如果要使用数据库功能,需要在bot中设置一个相同名称和数据结构的数据库进行绑定,具体设置方法参见「相关资源」循环体内容——选择器判断数据库查询的内容是否为空,如果是空,证明数据库中没有查到,这篇文章没有给这名用户推送过,使用「文本处理」节点,拼接这篇文章的完整信息,保证信息一致性string1:开始节点的key,也就是server酱的sendkey,用来识别用户string2:循环节点item值中的urlstring3:循环节点item值中的titlestring4:循环节点item值中的author拼接为如下格式,方便输出,并让后边节点使用右下方的「文本处理」节点没有实际作用,输入项随便写,主要是为了处理数据库查询到已经给这名用户推送过这篇文章情况下的占位项,否则工作流会报错设置循环节点输出项,选择循环体中「输出新文章内容」拼接后的字符串

【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)

[title]【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)[heading2]三、搭建工作流[heading3]6、循环查询文章是否推送过左侧工具栏选择「循环」节点这个节点主要由两部分组成:循环节点和循环体,整体逻辑是从循环节点设置循环次数和循环项,如果输入的是数组,循环次数就是数组的长度,类似于for语句,每次循环项就是数组中的值。说人话就是会根据你输入的内容自动判断循环几次,来使用循环体里的逻辑处理每一项。我们这里希望循环处理的逻辑是,对上一步中的每一篇内容在数据库中进行查询,如果查到了,证明之前推送过,本次工作流就不处理了,避免重复推送。如果没有查到,证明是一篇新的文章,继续工作流后边的内容。设置循环的输入项,选择上一步中输出的所有文章内容设置循环体,下边对循环体中的每一节点进行讲解

蓝衣剑客:四万字长文带你通学扣子

[title]蓝衣剑客:四万字长文带你通学扣子[heading2]四、如何在Coze上创建工作流、Bot[heading3]4.2常用工作流组件详解[heading4]4.2.1大模型组件在大模型节点中,设置系统级的提示词(system prompt)是一个关键步骤,这与外层用户直接交互的提示词不同。系统级提示词主要用于定义模型的角色和任务,提供一个固定的模板来指导模型的行为和输出。这种设置允许你明确地指示模型扮演的角色以及它需要完成的具体任务。例如,你可能需要模型作为一个历史顾问来回答有关过去事件的问题,或者作为一个技术专家来解决特定的技术问题。通过在系统级提示词中设定这些参数,你可以确保模型的输出与你的期望和工作流的需求保持一致。与外层提示词相比,系统级提示词更侧重于模型的内部工作机制,而外层提示词则更多地关注于如何根据用户的指令进行编排和响应。通过精心设计这两种提示词,可以增强模型对用户指令的处理能力,并确保整个工作流的顺畅和高效。在大模型组件中,批处理,也就是迭代处理,允许我们对集合或数组中的每个元素进行批量处理。这种处理方式通过依次遍历集合或数组,使得每个元素都能经过相同的处理流程。批处理的关键在于其能够通过有限循环实现高效的数据处理。批处理中,我们可以设置循环次数,也就是迭代的次数。例如,在Coze的大模型组件中,最多可以支持200次的循环,这相当于一个200次的for循环,允许我们对200个元素进行连续的处理。此外,批处理还涉及到并发量的问题。这里的并发量指的是在单次迭代中同时处理的元素数量。通过调整并发量,我们可以在一次循环中同时处理多个元素,从而提高处理效率。例如,如果集合中有200个元素,我们可以设置每次同时处理5个元素,这样只需要40次循环就可以完成整个集合的处理。

Others are asking
我是不懂编码的文科生,我学习扣子Coze的应用,难度大吗?大概需要多长时间?
对于不懂编码的文科生来说,学习扣子 Coze 的应用是具有一定挑战性的,但并非不可逾越。 根据相关资料,扣子 Coze 应用于 11 月底推出,其低代码或零代码的工作流等场景做得较好。在学习过程中,您需要熟悉操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 课程安排方面,第一天会熟悉扣子应用、认识界面、搭建证件照简单应用,解决表单使用等卡点。 不过,社区中很多不懂代码的设计师和产品经理在搭建时也感到吃力。对于学习所需的时间,难以给出确切的时长,这取决于您的学习能力和投入程度。但如果您能认真参与课程学习,逐步掌握相关知识和技能,相信会在一段时间内取得一定的成果。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
使用COZE搭建智能体的步骤
使用 COZE 搭建智能体的步骤如下: 1. 梳理手捏 AI Agent 的思路: 在上篇文章中提到过 Prompt 工程的必备能力,即通过逻辑思考,从知识经验中抽象表达出关键方法与要求,这一理念同样适用于在 Coze 中创建 AI Agent。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能。 完善:全面评估并优化 Agent 效果。 2. 分步构建和测试 Agent 功能: 首先进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 其中,左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 而编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 3. 全面评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-02-17
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
为什么扣子工作流里面大模型很慢
扣子工作流中大模型运行慢可能有以下原因: 1. 模型加载部分:需从官网下载两个文件,并正确配置,如在 models 下创建 groundingdino 且配置齐全相关文件。对于 groundingdino 和 sams 配置是否齐全可使用“抠头发.json”检验。 2. 科学上网问题:运行到此节点时可能会报科学上网的错误,需稳定科学上网后重启 UI 跑工作流。 3. 提示词设置:在大模型节点中,系统级提示词的设置很关键,它与外层用户直接交互的提示词不同,用于定义模型的角色和任务。 4. 批处理设置:包括迭代处理、循环次数和并发量的设置,通过调整这些参数可提高处理效率。 若觉得排除 bug 很慢,可使用的工作流进行操作。
2025-02-02
构建一个路由分类器AI,在工作流里面有什么好的设计方案,怎么能保证分类器进行分类准确呢
构建路由分类器 AI 的工作流设计方案如下: 1. 内容编排:在第四步中,将指令分为扩写、缩写、总结以及其他四类,设定最终的分类条件。分类器匹配到特定分支后执行相应操作,这种编排方式可过滤并避免处理不明确的指令,确保智能体准确响应用户指令。 2. 编写具体指令:为每个指令编写具体内容,如缩写、扩写和总结三个分支,创建包含变量(即用户初始输入的原始文本)的简单指令,用花括号引用变量,系统将值赋给变量并传递给模型推理形成提示词。 3. 最终输出:对各分支结果进行输出,输出内容相对简洁。 4. 测试流程:首先准备用于扩写、缩写和总结三项测试的文本素材,然后逐一进行各项测试,包括扩写测试、缩写测试、总结测试和错误处理测试,以验证每个分支能否顺利执行。 要保证分类器分类准确,可以从以下方面入手: 1. 清晰明确地设定分类条件,避免模糊和歧义。 2. 对输入的指令进行充分的预处理和规范化,使其符合分类器的预期格式。 3. 不断优化和调整分类器的参数和算法,以适应不同类型和复杂程度的指令。 4. 进行大量的测试和验证,收集错误案例并进行分析改进。
2024-12-29
coze工作流的llm,怎么重复/循环输出
Coze 工作流的 LLM 节点支持配置批量处理模式,后续该节点会按照配置多次运行,直到达到次数限制或者列表的最大长度,可以实现重复/循环输出。以下是一个示例,展示了如何使用 Coze 工作流的 LLM 节点实现重复/循环输出: 1. 配置 LLM 节点:在 LLM 节点的配置中,选择所用的大语言模型,并设置 Temperature 和提示词等参数。在提示词中支持使用 {{variable}} 引用输入参数(Input)。 2. 配置批处理:在 LLM 节点的配置中,启用批处理模式,并设置每次运行的参数值。可以根据需要设置不同的参数值,实现重复/循环输出。 3. 调用 LLM 节点:在工作流中调用 LLM 节点,并传入输入参数。LLM 节点会根据配置和输入参数生成输出结果。 4. 循环输出:根据批处理的配置,LLM 节点会多次运行,并每次生成不同的输出结果。这些输出结果可以通过工作流的输出节点返回给用户。 通过以上步骤,可以使用 Coze 工作流的 LLM 节点实现重复/循环输出。需要注意的是,Coze 工作流目前还不支持流式地输出结果,用户需要等 Workflow 执行完才能看到结果,这点比较影响体验。
2024-05-22
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
deepseek使用小技巧
以下是关于 DeepSeek 使用的一些小技巧: 1. 高阶能力调用: 文风转换矩阵:包括作家风格移植(如“用鲁迅杂文风格写职场 PUA 现象”)、文体杂交(如“将产品说明书改写成《史记》列传格式”)、学术口语化(如“把这篇论文摘要翻译成菜市场大妈能听懂的话”)。 领域穿透技术。 2. 场景化实战策略:包括商业决策支持、创意内容生成、技术方案论证。 3. 效能增强技巧: 对话记忆管理:如上下文锚定(“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(“请复述之前确认的三个设计原则”)、焦点重置(“回到最初讨论的供应链问题”)。 输出质量控制:针对不同问题类型进行修正,如过度抽象(“请具体说明第三步操作中的温度控制参数”)、信息过载(“用电梯演讲格式重新组织结论”)、风格偏移(“回归商务报告语气,删除比喻修辞”)。 4. 特殊场景解决方案: 长文本创作:如分段接力法(“先完成故事大纲→逐章扩展→最后进行伏笔校验”)、逻辑粘合剂(“确保新章节与前文的三处细节呼应”)。 敏感内容处理:如概念脱敏法(“用经济学原理类比说明网络审查机制”)、场景移植法(“假设在火星殖民地讨论该议题”)。 5. 通用于任何大模型的提示词针对性技巧: 身份定位技巧:目的是让 AI 理解您的背景和专业水平,例如“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 场景描述技巧:提供具体的应用场景和限制条件,例如“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 结构化输出技巧:指定具体的输出格式和内容结构,例如“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 分步骤提问技巧:将复杂问题拆解为可管理的小任务,例如“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 反馈优化技巧:通过追问获得更精准的答案。 深度思考引导技巧:获得更深入的分析和见解。 6. 万能提示词:您是一名顶尖的提示词优化专家,请按以下步骤优化下方提示: 分析原提示的模糊性、冗余项和潜在歧义。 基于,重构提示结构(可参考 CRISPE/BROKE 框架)。 生成 3 个优化版本,并解释每版的改进逻辑。 7. 如果官网的搜索不能用,一直崩溃,可以用火山的满血版,在视频的最后 10 分钟左右有手把手教程。 8. 关于 DeepSeek 的论文解读,有直播视频回放和相关论文下载,如。
2025-02-18
deepseek使用说明
DeepSeek 的使用说明如下: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 生成单词:输入单词主题、图片风格、单词数量,选择 deepseekr1 模型,可生成指定数量的单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词方面,作为专业的单词生成助手,要围绕用户输入主题挖掘相关英语单词,仅输出相关内容,并以规定的数组形式呈现。 产品情况:Deep Research 是基于 AI 模型的产品,使用 GPT4o、o3 等推理模型,结合 UI 交互、搜索引擎等。DeepSeek 只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。
2025-02-18
清华104页AI使用指南
以下是清华 104 页 AI 使用指南的相关内容: 智能纪要部分: 共学课程涵盖 config UI 从入门到精通,还有个人专栏研究报告、产品数据、全球投融资情况等内容,做项目时可查看细分赛道融资情况,也可学习 AI 功能创业,介绍了企业专栏内容如 Kimi 的技巧等。 提到了 AI 的案例和投稿,包含开发相关、微信机器人、人物角色等内容,还有日报动态、法律法规、历史更新和社区介绍等,布置了关于 AI 兴趣方向的小作业。 介绍了 CONFIUI 生态大会东京站 11 月 16 17 日的活动内容及报名,包括社区共创项目、大奖、首届活动情况、海外创作者共学等。 总结了关于 AI 知识库使用及 AIPO 活动的介绍,包括使用情况、发起背景、内容安排及相关资源等;AIPO 线下活动及 AI 相关探讨,包括规则、玩法、重要地位和研究方向等;way to AGI 社区活动与知识库介绍,包括活动安排、材料准备、使用和内容更新等;还包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 介绍了 AI 相关技术与活动,如 AI 音乐创作、数字人语音合成、config UI 的应用,以及社区共创项目如东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等,还有作业与报名、线下寄送物料组织活动、AI 春晚即将开始、AIPO 活动及相关挑战、共学活动与技能提升、硬件机器人材料购买、自媒体发布与流量扶持、活动奖项与历史玩法、工具使用与新大赛预告等。
2025-02-17
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17