直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ChatGLM简介

回答

ChatGLM 是中文领域效果最好的开源底座模型之一。其地址为:https://github.com/THUDM/ChatGLM-6B 。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,针对中文问答和对话进行了优化。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

LLM开源中文大语言模型及数据集集合

[title]LLM开源中文大语言模型及数据集集合[heading4]1.ModelChatGLM:地址:[https://github.com/THUDM/ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B)简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持VisualGLM-6B地址:[https://github.com/THUDM/VisualGLM-6B](https://github.com/THUDM/VisualGLM-6B)简介:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于ChatGLM-6B,具有62亿参数;图像部分通过训练BLIP2-Qformer构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。依靠来自于CogView数据集的30M高质量中文图文对,与300M经过筛选的英文图文对进行预训练。Chinese-LLaMA-Alpaca:地址:[https://github.com/ymcui/Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)简介:中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署,在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练

LLM开源中文大语言模型及数据集集合

[title]LLM开源中文大语言模型及数据集集合[heading3][heading4]2.1垂直领域微调[heading5]医疗Med-ChatGLM:地址:[https://github.com/SCIR-HI/Med-ChatGLM](https://github.com/SCIR-HI/Med-ChatGLM)简介:基于中文医学知识的ChatGLM模型微调,微调数据与BenTsao相同。QiZhenGPT:地址:[https://github.com/CMKRG/QiZhenGPT](https://github.com/CMKRG/QiZhenGPT)简介:该项目利用启真医学知识库构建的中文医学指令数据集,并基于此在LLaMA-7B模型上进行指令精调,大幅提高了模型在中文医疗场景下效果,首先针对药品知识问答发布了评测数据集,后续计划优化疾病、手术、检验等方面的问答效果,并针对医患问答、病历自动生成等应用展开拓展。ChatMed:地址:[https://github.com/michael-wzhu/ChatMed](https://github.com/michael-wzhu/ChatMed)简介:该项目推出ChatMed系列中文医疗大规模语言模型,模型主干为LlaMA-7b并采用LoRA微调,具体包括ChatMed-Consult:基于中文医疗在线问诊数据集ChatMed_Consult_Dataset的50w+在线问诊+ChatGPT回复作为训练集;ChatMed-TCM:基于中医药指令数据集ChatMed_TCM_Dataset,以开源的中医药知识图谱为基础,采用以实体为中心的自指令方法(entity-centric self-instruct),调用ChatGPT得到2.6w+的围绕中医药的指令数据训练得到。

LLM开源中文大语言模型及数据集集合

[title]LLM开源中文大语言模型及数据集集合[heading4]1.ModelLuotuo-Chinese-LLM:地址:[https://github.com/LC1332/Luotuo-Chinese-LLM](https://github.com/LC1332/Luotuo-Chinese-LLM)简介:囊括了一系列中文大语言模型开源项目,包含了一系列基于已有开源模型(ChatGLM,MOSS,LLaMA)进行二次微调的语言模型,指令微调数据集等。Linly:地址:[https://github.com/CVI-SZU/Linly](https://github.com/CVI-SZU/Linly)简介:提供中文对话模型Linly-ChatFlow、中文基础模型Linly-Chinese-LLaMA及其训练数据。中文基础模型以LLaMA为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了Linly-ChatFlow对话模型。ChatYuan地址:[https://github.com/clue-ai/ChatYuan](https://github.com/clue-ai/ChatYuan)简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。ChatRWKV:地址:[https://github.com/BlinkDL/ChatRWKV](https://github.com/BlinkDL/ChatRWKV)简介:开源了一系列基于RWKV架构的Chat模型(包括英文和中文),发布了包括Raven,Novel-ChnEng,Novel-Ch与Novel-ChnEng-ChnPro等模型,可以直接闲聊及进行诗歌,小说等创作,包括7B和14B等规模的模型。

其他人在问
开源大模型ChatGLM 系列有哪些版本
ChatGLM 系列的开源版本包括: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新设计的 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的基础模型中性能较强。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 的基础上进一步强化了对长文本的理解能力,能处理最多 32K 长度的上下文。
2024-11-04
ChatGLM3 及相关系列产品有哪些
2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。其中,智谱清言是基于 ChatGLM 大模型的产品。 智谱清言的特点包括:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。总体更擅长专业能力,但代码能力还有优化空间,知识百科与其他第一梯队模型相比稍显不足。 其适合的应用场景相对广泛,根据 SuperCLUE 测评结果,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。在较复杂推理应用上效果不错,在广告文案、文学写作方面也是很好的选择。
2024-11-04
分析 ChatGLM在文生视频领域的应用产出
ChatGLM 是中文领域效果较好的开源底座模型之一,其地址为:。经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术进行优化,针对中文问答和对话有出色表现。 此外,还有基于 ChatGLM6B 的 VisualGLM6B,地址为:。它是一个开源的、支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数。图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。依靠来自于 CogView 数据集的 30M 高质量中文图文对,与 300M 经过筛选的英文图文对进行预训练。 在文生视频领域,ChatGLM 及其相关模型可能通过对文本的理解和生成能力,为视频的脚本创作、内容描述生成等方面提供支持,但具体的应用产出还需要结合实际的开发和应用场景来进一步探索和评估。
2024-10-30
ChatGLM视频表现有何特色,优劣分析一下
ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色: 1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。 2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 其优势包括: 1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。 然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
2024-10-30
ChatGLM在生成视频上表现如何
目前 ChatGLM 主要侧重于自然语言处理和文本生成,在生成视频方面的能力相对有限。它并非专门为视频生成而设计的模型。
2024-10-30
ChatGLM是谁开发的
ChatGLM 是由清华大学开发的。它是一个开源的、支持中英双语的对话语言模型,底座是 GLM 语言模型。其相关项目地址为: 。
2024-10-30
列出2-3个精选的比较好的文本处理类的AI工具或网站,要求尽量是国内的产品,最好是免费的。罗列时应包含以下信息:名称、简介、2-3个主要功能、横向对比的优缺点
以下为您精选的国内文本处理类 AI 工具或网站: 1. 秘塔写作猫 简介:利用 AI 技术辅助用户进行高质量写作。 主要功能:检查语法、拼写错误;提供写作改进建议;进行智能润色和内容创作辅助。 优点:功能较为全面,能有效提升写作质量。 缺点:可能存在对某些特定领域的适应性不足。 2. Lettria 简介:处理个人文本材料。 主要功能:对个人文本进行分析和处理。 优点:专注于个人文本处理,针对性较强。 缺点:功能相对较单一。
2024-11-19
ai简介
AI(人工智能)是一种能够模拟人类智能的技术,已经广泛应用于多个领域。 在医疗保健领域,AI 可用于医学影像分析辅助诊断疾病、加速药物研发、提供个性化医疗方案、控制手术机器人提高手术精度和安全性。 在金融服务领域,AI 能用于风控和反欺诈、信用评估、投资分析以及提供 24/7 客户服务等。 在零售和电子商务中,AI 可实现产品推荐、改善搜索和个性化体验、进行动态定价以及提供聊天机器人服务。 在制造业,AI 有助于预测性维护、质量控制、优化供应链、控制工业机器人提高生产效率。 在交通运输领域,AI 在汽车行业的应用包括自动驾驶技术、车辆安全系统、个性化用户体验、预测性维护、生产自动化、销售和市场分析、电动化和能源管理、共享出行服务、语音助手和车载娱乐、车辆远程监控和诊断等。 豆包 AI 是抖音旗下基于云雀大模型开发的 AI 智能助手,提供聊天机器人、写作助手、英语学习助手等功能,能回答各种问题并进行对话,网址是:https://www.doubao.com/
2024-10-03
AI工具简介
以下是一些常见的 AI 工具简介: 思维导图相关的 AI 工具: 1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路、生成文章大纲。 5. TreeMind:输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供包括 AI 驱动的头脑风暴等功能,提升生产力。 可绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,可拖放界面创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用,支持逻辑视图创建。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现 diagrams.net):免费在线图表软件,支持多种类型图表创建。 能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载建筑大模型。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据需求生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,可引入标准和规范约束设计结果。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-06
我是小白。请给我学习指南,我应该先学什么,后学什么,需要安装哪些AI工具或者收藏哪些网站。我需要简介明了的新手指南,要具体,有可操作性,同时要完整,希望涵盖我学习的全过程。
以下是为您提供的 AI 学习新手指南: 一、学习顺序 1. 首先,您需要拥有一个大模型账号,并熟悉与它们对话的方式。推荐使用性能强大的 ChatGPT4,国产平替有: 2. 接着,阅读 OpenAI 的官方文档: 3. 对于阅读吃力的情况,推荐以下 3 个英文阅读的工具/方法: 浏览器插件“沉浸式翻译” 二、学习方法 1. 掌握提示词的技巧,提示词上手容易且很有用。 2. 进行实践和尝试:理论学习之后,通过实践巩固知识,尝试使用各种产品做出您的作品。 3. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 4. 持续学习和跟进:AI 领域发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-09-02
怎么用AI 做公司简介
使用 AI 制作公司简介可以按照以下步骤进行: 1. 选择合适的 AI 工具:根据公司的需求和预算,选择一款适合的 AI 写作工具。 2. 输入相关信息:向 AI 工具提供公司的基本信息,如公司名称、业务范围、核心价值观等。 3. 设定风格和语气:根据公司的形象和目标受众,设定简介的风格和语气,例如正式、专业、友好等。 4. 生成初稿:让 AI 工具根据输入的信息和设定的要求生成公司简介的初稿。 5. 审核和修改:仔细审核 AI 生成的初稿,确保内容准确、清晰、符合公司的形象和需求。对需要修改的地方进行调整和完善。 6. 优化和完善:根据审核的结果,对简介进行进一步的优化和完善,使其更具吸引力和可读性。 7. 最终审核:再次审核简介,确保没有错别字、语法错误等问题。 8. 发布和使用:将完成的公司简介发布到公司的网站、社交媒体等渠道上,供客户和合作伙伴了解公司。 需要注意的是,AI 生成的公司简介只是一个初稿,需要人工进行审核和修改,以确保内容的质量和准确性。同时,不同的 AI 工具可能具有不同的特点和优势,可以根据实际情况选择合适的工具。
2024-07-11
图生视频工具简介
图生视频工具是一种可以将图片或视频转换为视频的工具。以下是一些常用的图生视频工具: Pixverse:支持文生视频、图生视频,人物一致性角色创建。提示词使用中文、英文都可以。文生视频支持正向、反向提示词、选风格、种子值,支持 16:9、9:16、1:1、4:3、3:4 尺寸。图生视频支持正向提示词、运动强度、种子值。一致性人物角色支持正向、反向提示词、选人物、种子值,支持 16:9、9:16、1:1、4:3、3:4 尺寸。暂时不支持镜头控制,默认生成 4s 视频。 Stable video:支持文生视频、图生视频,仅英文。图生视频不可写 prompt,提供多种镜头控制。文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 Pika:支持文生视频、图生视频,视频生视频。提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、自动配音效、运镜控制、运动强度控制、帧数选择,支持 16:9、9:16、1:1、5:2、4:5、4:3 尺寸,可设置提示词关联性、种子值。图生视频、视频生视频除了尺寸不可选以外,其他跟文生视频基本相同,另外多了唇部同步功能。生成好的视频可以延长时间、放大,默认生成 3s 的视频。 以上是一些常用的图生视频工具,你可以根据自己的需求选择适合自己的工具。
2024-05-30