Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何训练专属我的问答机器人

Answer

要训练专属您的问答机器人,基于飞书能力开发时,首先需要了解问答机器人的底层原理——RAG 技术。

RAG 的基本流程如下:

  1. 当接收到用户的输入,比如一个问题或一个话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出与之相关的文本片段,这些文本片段被称为上下文。
  2. 接着,RAG 会将用户的输入和检索到的上下文拼接成一个完整的输入,并传递给大语言模型(例如 GPT)。这个输入通常会包含一些提示,用于指导模型生成期望的输出,比如一个答案或一个摘要。
  3. 最后,RAG 会从大语言模型的输出中提取或格式化所需的信息,再返回给用户。
Content generated by AI large model, please carefully verify (powered by aily)

References

如何基于飞书能力来开发问答机器人

RAG的基本流程是:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大语言模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大语言模型的输出中提取或格式化所需的信息,返回给用户。

Others are asking
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
如何做一款专属某行业的AI
要开发一款专属某行业的 AI ,可以参考以下要点: 1. 学习模式:AI 应像人类一样学习,例如在医疗保健领域,创建具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力,可能会以与人脑皮层类似的方式发展,并针对特定任务专门设计神经架构。 2. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,预计会创造许多专家 AI ,它们在编码、数据和测试方面采用多样化方法,并提供多种意见。 3. 现实世界互动:让熟练的人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,同时避免复制危险的偏见。 4. 模型生态系统:以医疗保健为例,应投资创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。成为顶尖人才通常从多年密集信息输入和正规教育开始,再通过学徒实践,AI 学习也应如此,通过堆叠模型训练,而非仅依靠大量数据。 5. 行业调研报告: 步骤:让 AI 阅读学习优秀行业调研报告,总结方法论和操作框架;询问收集行业数据时所用的一手和二手数据及靠谱资料收集网站;要求 AI 推荐行业信息网站和微信公众号,并输出行业调研报告框架;丰富框架每一章节内容。 注意事项:使报告有深度可通过自身对行业的了解整理深度洞察和见解,或深度咨询 AI 并借助其知识学习、研究和总结。 以上是关于如何做一款专属某行业的 AI 的相关内容。
2025-01-22
我想训练一个专属Agent该怎么做?
要训练一个专属 Agent,以下是一些关键步骤和要点: 1. 明确目标:确定您希望 Agent 实现的特定目标,这将为训练提供方向。 2. 理解智能体的定义:智能体是能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 3. 规划:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 4. 反思和完善:让 Agent 能够对过去的行为进行自我批评和反思,从错误中吸取教训,并针对未来步骤进行完善,提高最终结果质量。 5. 记忆管理:包括短期记忆,利用模型的短期记忆进行学习;长期记忆,通过外部向量存储和快速检索实现长时间信息保留和回忆。 6. 工具使用:训练 Agent 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 7. 评估工具使用能力:从调用 API 的能力、检索 API 的能力以及计划 API 超越检索和调用的能力这三个层面进行评估。 在训练过程中,还需要注意模型的上下文窗口长度有限,输入的剧集应足够短以构建多剧集历史,2 4 个剧集的多剧集上下文对于学习近乎最优的上下文强化学习算法是必要的,且上下文强化学习的涌现需要足够长的上下文。
2025-01-17
部署Agent专属的web端应用
以下是关于部署 Agent 专属的 web 端应用的相关内容: 在 Linux 上部署较为简单,前提是您有一张 4G 以上显存的 GPU 显卡。步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动生成语音时,需查看控制台输出,会下载一些模型文件,可能因网络问题失败,但首次加载成功后后续会顺利。 5. 基于此基础可拓展,比如集成到 agent 的工具中,结合 chatgpt 做更拟人化的实时沟通。 6. webui 上可设置的几个参数说明: text:指需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,是一个用于选择声音类型的数字参数,默认值为 2,是很知性的女孩子的声音。 Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿,实测文本的停顿设置会影响音色、音调。 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果,例如。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息仅供参考,您可根据自身需求选择适合的平台。
2025-01-07
AI+交易:来定制专属于你的私人高级交易顾问吧!
以下是关于“AI+交易:来定制专属于你的私人高级交易顾问吧!”的相关内容: 原本是一名 AIGC 创作者,在接触交易后,希望将交易与 AIGC 相结合,打造私人高级交易顾问。学习交易知识后认识到,单纯迷信技术分析提高胜率实现长期稳定盈利对个人投资者不可行,心态关键。新人对交易理论不熟悉更致命,成熟交易员单一策略熟练运用能找进出点、良好心态能长期盈利,但不熟悉行情只能观望。借助 AI 分析行情,期望在不熟悉市场时找到合适进场点,提高资金使用效率,多种策略配合提高理论胜率(有统计数据显示几千名专业交易员一年里平均胜率 70)。 此外,还有以下 AI 与工作场景结合的案例: 1. 销售方面:包括话术总结优缺点、定制销售解决方案。 2. 客服方面:定制客服话术,有关键词库,如产品知识、使用方法等。 3. HR 方面:团队绩效管理,根据绩效数据输出考评和改进建议;面试工具,如使用 GPT4 技术的实时转录工具帮助求职者生成回答。 另外,在七大行业的商业化应用中: 1. 企业运营:包括日常办公文档撰写整理、营销对话机器人等。 2. 教育:协助评估学生学习情况、定制学习内容等。 3. 游戏/媒体:如定制化游戏、出海文案生成等。 4. 零售/电商:包括舆情监测分析、品牌营销内容撰写等。 5. 金融/保险:如个人金融理财顾问、识别欺诈活动风险等。
2024-12-17
如何打造专属自己的ai智能体?让保存的文献资料为自己专属分析只用?
打造专属自己的 AI 智能体并让保存的文献资料为自己专属分析,可参考以下步骤: 1. 设计 AI 智能体架构:先构思整个 AI 智能体的架构。 2. 规定稍后读阅读清单的元数据:新建一个飞书多维表格,根据稍后读的管理需要,定义元数据字段,如“内容(超链接格式,显示页面标题,可点击跳转具体的页面)”“摘要(根据具体内容,总结内容主题、关键信息、阅读价值,并指出适合的读者群体)”“作者”“平台”“状态(阅读状态,收藏的默认态为“仅记录”)”“发布日期”“收集时间”等。您也可以直接复制准备好的模板:【模板】稍后读管理 3. 搭建整理入库工作流: 首先在 Coze 中逐步搭建 AI 智能体,搭建整理入库工作流。这是支撑整个 AI 稍后读服务的前置流程。 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url。由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址。为便于维护充当稍后读存储地址的飞书多维表格链接,需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容。这一步直接把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-11-29
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
怎么做一个知识库智能问答机器人?
要做一个知识库智能问答机器人,主要基于大模型的 RAG 机制,具体步骤如下: 1. 理解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成在巨大图书馆里找相关书籍,再基于书籍信息给出详细回答,这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 2. 创建知识库:创建包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传文章内容,并陆续将社区其他板块的文章和资料导入。 3. 设计 Bot:在设计中添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能利用好知识库返回的内容进行结合回答。 此外,在飞书中,还可以利用飞书智能伙伴创建平台(Aily)来搭建 FAQ 机器人,它是飞书团队旗下的企业级 AI 应用开发平台,能为企业提供简单、安全且高效的环境,帮助轻松构建和发布 AI 应用。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
waytoAGI知识库智能问答机器人是如何实现的
waytoAGI 知识库智能问答机器人的实现方式如下: 基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话等任务。 在飞书 5000 人大群里内置,根据通往 AGI 之路的文档及知识进行回答。使用方法为在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 其具备多种功能,如自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等。 搭建过程包括介绍 WaytoAGI 社区的成立愿景和目标、利用 AI 技术帮助用户检索知识库内容、引入 RAG 技术、介绍基于飞书的知识库智能问答技术的应用场景和实现方法、使用飞书的智能伙伴功能搭建 FAQ 机器人以及智能助理的原理和使用方法等。
2025-02-12
如何使用钉钉中的知识库构建智能问答机器人
以下是使用钉钉中的知识库构建智能问答机器人的步骤: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 配置极简未来(Link.AI)平台:按照官方教程操作,教程地址为 https://docs.linkai.tech/platform/createapp ,学习补充可参考 https://docs.linkai.tech/platform/quickstart 。 教程中的应用是创建一个具体的 AI 问答机器人应用。 教程中的知识库是给绑定到指定问答机器人的资料数据集,让机器人基于这些内容回答问题。 知识库应用中的应用设定是给 AI 机器人的提示词内容或者人设,关于提示词可查看教程 https://waytoagi.feishu.cn/wiki/OqJQwzq2wi9EIOkFtFkclM24nSe 。 创建成功的 AI 应用,记住应用的应用 ID,用于后续对接微信聊天机器人。 生成 API Key 用于后续功能对接,地址为 https://linkai.tech/console/interface ,点击创建 API Key 并记住。 2. 用 Coze 免费打造自己的微信 AI 机器人: 设计 AI 机器人: 开始节点和结束节点会自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将开始节点和知识库左侧节点连接,知识库输入引用开始节点的变量“Question”,点击“+”号选择之前创建好的知识库,将知识库右侧节点与结束节点左侧连起来。 结束节点配置:用于输出 AI 机器人的最终结果,回答格式设置为“您的问题:{{question}} 问题的答案:{{answer}}”,在输出变量那里定义“question”引用“开始节点的 Question”,“answer”引用“知识库节点的输出 output”,回答模式选择使用设定的内容直接回答。 试运行测试:点击右上角“试运行”,输入问题如“AIGC 课件”,点击右下角“运行”,查看工作流每一步的详细输入和输出。
2025-02-12
问答方式如何使用好大模型
以下是关于如何使用好大模型的一些指导: 1. 本地部署资讯问答机器人: 加载所需的库和模块,如用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,可通过指定的 RSS 订阅 url 提取,如需多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成小块,并附带相关元数据,最终合并成列表用于后续处理。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型放置在指定路径,通过函数利用 FAISS 创建高效向量存储。 Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。提供模型库,用户可从中下载不同模型,还支持自定义模型,如修改温度参数等,同时提供 REST API 用于运行和管理模型及与其他应用集成,社区贡献丰富。需先安装,可通过 https://ollama.com/download/ 下载,安装后确保后台服务已启动。 2. 编写清晰的说明: 在 OpenAI 官方说明文档中提到的“官方最佳实践”为用户提供了若干策略。 策略一是编写清晰的说明,在询问中包含详细信息,多说一些内容,多提供一些信息,能有效提高大模型回复的质量和丰富性。通过多个具体例子展示了提供更多细节能得到更符合预期的回答。
2025-02-11
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
飞书机器人设置
以下是关于飞书机器人设置的详细步骤: 1. 工作流搭建: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻麦洛薇机器人。 2. 飞书机器人创建: 飞书应用建立: 在中创建自建应用。 进入应用获取 app_id 与 app_secret。 添加应用能力>开启机器人应用能力。 权限管理>消息与群组>选择需要的权限打开。 安全设置>将 comfyUI 运行的电脑 IP 加入白名单。 发布机器人以应用生效。 获取群组或用户 id: 要先把创建的机器人拉到群组中或者拉进私聊。 飞书开发平台找到发送消息的开发文档。 右侧点击获取 token。 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg。 3. 发布到飞书: 登录平台。 在左侧导航栏,选择打开个人空间或一个团队空间。 在 Bots 页面,选择需要发布的 Bot。 在 Bot 编排页面,单击发布。 首次发布时需要进行授权,根据引导完成授权。 单击配置。 在打开的页面,单击点击获取当前应用链接。 单击获取。 在打开的页面,(可选)配置安装范围,然后勾选隐私协议,最后单击授权并安装。 应用安装完成后,返回扣子 Bot 的发布页面,再次单击配置。 在弹出的页面,单击授权。 输入发布信息,勾选飞书渠道,然后单击发布。 发布完成后,可点击在飞书中打开链接跳转至飞书应用中,与 Bot 对话。 如果这是您的飞书租户第一次发布扣子 Bot 应用,您会收到飞书消息提醒。如果提醒应用审核通过,则您可以直接使用 Bot。否则您需要等待企业管理员审核完成之后,才可以使用 Bot。 4. 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档: 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 名称:给令牌起一个名字。 过期时间:为了方便选择永久有效。 选择制定团队空间:可以是个人空间、也可以选择团队空间。 权限:勾选所有权限。 要保存好令牌的 Token,切勿向他人泄露。 Coze 设置: 获取机器人 ID:在个人空间中找到自己要接入到微信中的机器人,比如有计划要将画小二智能小助手接入到微信群中。点击对应的机器人进入机器人编辑界面。在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 API 授权:然后再点击右上角发布。这里会发现多了一个 Bot as API,意思就是自己定义的 API 发布取到了。勾选 Bot as API,确定应用已经成功授权 Bot as API。
2025-02-16
agent训练
在人工智能领域中,AI Agent 的训练具有以下特点: 传统强化学习中,Agent 训练往往需大量样本和时间,且泛化能力不足。 为突破瓶颈,引入了迁移学习:通过促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力,但当源任务与目标任务差异大时,可能无法发挥效果甚至出现负面迁移。 探索了元学习:核心是让 Agent 学会从少量样本中迅速掌握新任务最优策略,能利用已有知识和策略调整学习路径适应新任务,减少对大规模样本集依赖,但需要大量预训练和样本构建学习能力,使开发通用高效学习策略复杂艰巨。 时间:21 世纪初至今 特点:迁移学习是将一个任务学到的知识迁移到其他任务;元学习是学习如何学习,快速适应新任务。 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM。 优点:提高学习效率,适应新任务。 缺点:对源任务和目标任务的相似性有一定要求。 此外,智谱 AI 开源的语言模型中与 Agent 相关的有: AgentLM7B:提出了 AgentTuning 方法,开源了包含 1866 个高质量交互、6 个多样化真实场景任务的 Agent 数据集 AgentInstruct,基于上述利用 Llama2 微调而成,上下文 token 数为 4K。 AgentLM13B:上下文 token 数为 4K。 AgentLM70B:上下文 token 数为 8K。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
主流的LORA 训练工具是什么?
主流的 LORA 训练工具包括: 1. B 站 UP 主“朱尼酱”的赛博丹炉,其界面友好、美观,适合新手入门。 2. 训练器,支持 Kolors 开源模型。 3. Kolors+Refiner,由 AIKSK 开发的工作流应用。 4. Kolors可图大模型XL 精修工作流,由@AiARTiST 非人类开发。 5. kolors+SDXL 细节修复+instant+ipa,由@谷尘 DesignDog 开发。 6. kolors 一键设计中文海报,由亦诚视觉开发。 7. ,魔搭社区官方模型。 8. InstantIDKolors 专属模型,由 InstantX 开发。
2025-02-18
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置不限,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程。下载完成后会提示是否下载 hunyuan 模型,选择“n”不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。建议提前将图片和标签打包成 zip 上传,Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择您的 Lora 和调节参数。
2025-02-17
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16