直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

用户声音分析

回答

以下是关于用户声音分析的相关内容:

  • 人工智能音频初创公司:
    • Audio Analytic:通过更强的听觉感知创造卓越的人类体验。
    • SoundEye:先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。
    • cochl:下一代声音 AI 平台,能够像人类一样理解任何声音。
    • Josh.ai:语音控制的家庭自动化系统。
    • SEE SOUND:世界上首个智能家居听觉系统。
    • Epigos.ai:可用于从音频源中提取隐藏数据的 AI 模型。
    • HyperSurfaces:无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。
    • HyperSentience:为手机、VR/AR 头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。
    • Circulr Sound:智能音频穿戴设备。
    • Securaxis:我们将声音转化为信息。
    • Deeply:使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。
  • 分析报告范例:
    • GPT + SBERT 做用研统计:无法做 SBERT 统计频次。
    • 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告:无法做 SBERT 统计频次。报告中提到了眼镜佩戴的相关问题,如长时间佩戴的不适(鼻垫、耳杆问题)、大小和重量问题、对特定用户群体的不适(视力、眼间距问题)、音频体验的限制等。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

人工智能音频初创公司列表

[Audio Analytic](https://www.audioanalytic.com/)-通过更强的听觉感知创造卓越的人类体验。[SoundEye](https://sound-eye.com/)-先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。[cochl](https://www.cochl.ai/)-下一代声音AI平台,能够像人类一样理解任何声音。[Josh.ai](https://www.josh.ai/)-语音控制的家庭自动化系统。[SEE SOUND](https://www.see-sound.com/)-世界上首个智能家居听觉系统。[Epigos.ai](https://www.epigos.ai/)-可用于从音频源中提取隐藏数据的AI模型。[HyperSurfaces](https://www.hypersurfaces.com/)-无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。[HyperSentience](https://hypersentience.ai/)-为手机、VR/AR头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。[Circulr Sound](https://www.circulrsound.com/)-智能音频穿戴设备。[Securaxis](https://www.securaxis.com/)-我们将声音转化为信息。[Deeply](https://deeplyinc.com/)-使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。

分析:GPT+SBERT做用研统计

ponse:(无法做SBERT统计频次)|Query|GPT response||-|-||Physical Discomfort|1.长时间佩戴的不适:一位用户表示,虽然眼镜的鼻垫对于短期佩戴来说还可以接受,但在长时间使用后,他希望鼻垫能更柔软一些,例如使用记忆泡沫或其他材料,而不是硅胶垫。此外,他提到眼镜的耳杆较短,不能很好地围绕耳朵,长时间佩戴后可能会感到不适。<br>2.大小和重量问题:另一位用户评论说,眼镜的大小较大,可能会给一些头型较宽的用户带来压迫感。尽管可以调节屏幕角度来改变压力点,但用户没有发现任何调节屏幕位置(深度或眼间距)的方法。此外,他们还指出,眼镜的重量可能会在鼻梁上留下压痕。<br>3.对特定用户群体的不适:一位用户详细描述了他在视力方面的问题。他指出,虽然他佩戴隐形眼镜,但在使用Nreal Air时,左眼始终无法完全聚焦。他还提到,由于眼镜是“一码合小”,对于眼间距较宽的用户来说,屏幕的外侧(左眼的左侧和右眼的右侧)会出现模糊。这表明眼镜可能并不适合所有人的面部结构。<br>4.音频体验的限制:同一位用户还比较了Nreal Air和其他具有内置扬声器的眼镜,指出尽管Nreal Air具备音频功能,但在低音和最大音量方面略显不足。这意味着长时间佩戴时,用户可能需要使用其他耳机来获得更好的音频体验。|交叉分析

邬嘉文:AI做用户研究|Claude 3 Opus可以直接输出用户研究报告

ponse:(无法做SBERT统计频次)|Query|GPT response||-|-||Physical Discomfort|1.长时间佩戴的不适:一位用户表示,虽然眼镜的鼻垫对于短期佩戴来说还可以接受,但在长时间使用后,他希望鼻垫能更柔软一些,例如使用记忆泡沫或其他材料,而不是硅胶垫。此外,他提到眼镜的耳杆较短,不能很好地围绕耳朵,长时间佩戴后可能会感到不适。<br>2.大小和重量问题:另一位用户评论说,眼镜的大小较大,可能会给一些头型较宽的用户带来压迫感。尽管可以调节屏幕角度来改变压力点,但用户没有发现任何调节屏幕位置(深度或眼间距)的方法。此外,他们还指出,眼镜的重量可能会在鼻梁上留下压痕。<br>3.对特定用户群体的不适:一位用户详细描述了他在视力方面的问题。他指出,虽然他佩戴隐形眼镜,但在使用Nreal Air时,左眼始终无法完全聚焦。他还提到,由于眼镜是“一码合小”,对于眼间距较宽的用户来说,屏幕的外侧(左眼的左侧和右眼的右侧)会出现模糊。这表明眼镜可能并不适合所有人的面部结构。<br>4.音频体验的限制:同一位用户还比较了Nreal Air和其他具有内置扬声器的眼镜,指出尽管Nreal Air具备音频功能,但在低音和最大音量方面略显不足。这意味着长时间佩戴时,用户可能需要使用其他耳机来获得更好的音频体验。|交叉分析

其他人在问
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
用扣子智能体制作一个有关热门旅游景点攻略小助手的工作流,能够根据不同用户的需求,制定个性化的旅行计划,涵盖各种热门旅游景点,提供详细的行程安排、交通指南和景点特色介绍
要使用扣子智能体制作一个有关热门旅游景点攻略小助手的工作流,以下是一些参考信息: 1. 扣子智能体通常由工作流和数据库组成。工作流的设计相对简单,一个输入对接知识库,搭载豆包 function call 大模型,最后输出。数据库的收集和整理需要一定专业知识,并进行手动二次校对。 2. 插件方面,扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容等的 API,还可根据需求自制插件。 3. 工作流就像可视化的拼图游戏,由多个节点组成,包括大语言模型、代码块等,能创造复杂稳定的业务流程。 4. 扣子预置了各种场景的 Bot,如旅游大师 Bot。在 Bot 商店可查看精选的预置 Bot,选择后会被引导至编排页面,该页面分为顶部区域(显示所用大型语言模型)、人设与回复逻辑区域、技能区域(展示配置的功能,如查询航班的插件、推荐景点的工作流等)、预览与调试区域(展示交互运行结果)。 基于以上信息,您可以尝试设计热门旅游景点攻略小助手的工作流,根据不同用户需求制定个性化旅行计划,涵盖热门景点、行程安排、交通指南和景点特色介绍。但需要注意的是,工作流的设计和数据库的整理需要精心规划和准确操作。
2024-12-16
目前中国用户最多的AI应用
目前中国用户较多的 AI 应用有: 1. 500px 摄影社区:这是一个 AI 摄影比赛平台,运用图像识别、数据分析技术,市场规模达数亿美元。它举办摄影比赛,展示优秀摄影作品,利用 AI 技术对参赛作品进行评选和分类,为摄影爱好者提供展示和交流的平台。 2. Logic Pro X 教学软件:作为 AI 音乐制作教学平台,采用机器学习、音频处理技术,市场规模达数亿美元。它为用户提供个性化的音乐制作教学服务,帮助用户掌握音乐制作技巧。 3. 鲁班到家 APP:这是一个 AI 家居维修服务平台,借助数据分析、自然语言处理技术,市场规模达数亿美元。它能分析用户的维修需求和地理位置,为用户推荐附近的专业维修人员。 4. 雪球财经 APP:作为 AI 金融投资教育平台,运用数据分析、自然语言处理技术,市场规模达数亿美元。它为用户提供个性化的金融投资教育服务,包括投资课程、市场分析和投资策略等。 5. WPS 文档翻译功能:这是一个 AI 办公文档翻译工具,使用自然语言处理技术,市场规模达数亿美元。它可以快速翻译办公文档,提高工作效率。 6. 美丽修行 APP:这是一个 AI 美容护肤产品推荐平台,通过数据分析、自然语言处理技术,市场规模达数亿美元。它根据用户肤质推荐适合的美容护肤产品。 7. 360 儿童手表:作为 AI 儿童安全监控系统,运用图像识别、机器学习技术,市场规模达数亿美元。它实现定位、通话、安全区域设置等功能,家长可实时监控孩子的位置和活动情况。 8. 汽车之家 APP:这是一个 AI 汽车保养提醒系统,借助数据分析、机器学习技术,市场规模达数亿美元。它根据用户的汽车型号、行驶里程等信息提醒车主进行定期保养。 9. 彩云天气专业版:这是一个 AI 天气预报定制服务应用,利用数据分析、机器学习技术,市场规模达数亿美元。它根据用户需求提供个性化天气预报服务。 10. 微医 APP:作为 AI 医疗健康管理平台,运用数据分析、机器学习技术,市场规模达数十亿美元。它分析用户的健康数据,为用户提供个性化的健康管理方案。 11. 腾讯会议策划工具:这是一个 AI 会议策划助手,使用自然语言处理、数据分析技术,市场规模达数亿美元。它协助用户策划会议,提高会议效率和质量。 12. 雅昌艺术网拍卖频道:这是一个 AI 书法作品拍卖平台,借助图像识别、数据分析技术,市场规模达数亿美元。它对书法作品进行鉴定和评估,为书法爱好者提供作品拍卖服务。
2024-12-13
如果要设计一个对话式的AI用户界面,有哪些要点需要注意?
设计一个对话式的 AI 用户界面,以下要点需要注意: 1. 语言使用: 使用用户熟悉的词语、短语和概念,避免内部术语。 遵循现实世界的惯例,使信息呈现自然和逻辑的顺序。 确保用户能够理解单词的含义,无需查阅字典。 永远不要假设自己对单词或概念的理解与用户匹配,通过用户研究揭示用户熟悉的术语和他们对重要概念的心智模型。 2. 行为引导: 明确告诉 API 意图以及如何行事,避免其偏离轨道。 给 API 赋予一个身份,有助于其以接近真相的方式进行回答。 提供问题和答案示例,让 API 掌握回复模式。 3. 编程方式: 从命令式编程转变为对话式编程,与 AI 进行深度互动,讨论需求而非直接命令。 利用 AI 从想法到实现的全程协助,但初学者需谨慎使用,避免过度依赖导致基础知识缺失,应将其作为学习工具。
2024-12-12
现在系统中有一些案例,这些案例包括一些PDF\PPT\WORD等文件,如何引入AI对这些案例进行解析,方便用户智能搜索、对文本中的内容进行全文提问
要引入 AI 对包括 PDF、PPT、WORD 等文件的案例进行解析,以方便用户智能搜索和对文本内容进行全文提问,可以参考以下方法: 1. 对于法律文本阅读场景: 操作动作:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 Prompt 指令词示例:“图纸是谁设计的?”“谁负责承担本项目的设计、建设?”“贷款期限是多少?”“谁承担律师费?”“请概括原告的诉讼请求和事实理由?”“根据民事答辩状,被告张三一方还有更好的答辩建议吗?” 拼接模板:根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】。你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】+ 我的问题是:参考上述 Prompt 指令词。 2. 对于 AI 产品案例和投稿中的自媒体场景: 例如“创作:社群的每日资讯”“创作:写科普内容”“分发:内容分发”“沟通:小团队与甲方沟通”等案例,涵盖了品牌推广、科普创作、内容分发、团队沟通等方面。 3. 对于 AI 产品案例和投稿中的工作场景: 包括企业运营、教育、游戏/媒体、零售/电商、金融/保险等七大行业的商业化应用,如企业日常办公文档撰写、教育资源平等获取、游戏剧情生成、电商舆情监测、金融理财顾问等方面。
2024-12-10
推荐一个大模型,可以实现特定人的声音,朗读文字
以下为您推荐可以实现特定人声音朗读文字的大模型及相关工具: 大模型方面:包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 语音合成(TTS)工具: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 Eleven Labs:https://elevenlabs.io/ ,ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 Speechify:https://speechify.com/ ,Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 此外,上述算法开源的代码有很多,例如: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition 除了算法,人物建模模型可以通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型)实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音,TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作,数字人如何使用知识库,做出某个领域的专业性回答等。
2024-12-18
声音复刻
声音复刻主要通过 GPTSoVITS 来实现,以下是相关步骤和信息: 1. 前置数据获取处理: 选择音频并进行切割。 若有噪音,进行降噪处理。 降噪处理完成后,开启离线 ASR。 2. GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理,刷新模型,选择微调后的模型(如 yoyo)。 3. 声音复刻:开启声音复刻之旅,可实现跨多语种语言的声音。 4. 实践的样本: AIyoyo 普通话 满江红 AIyoyo 粤语版 满江红 GPTSoVITS 是一个声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点: 1. 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 2. 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。 3. 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 4. 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 5. 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 6. 预训练模型:项目提供了一些已经训练好的模型,你可以直接下载使用。 GitHub: 视频教程: 此外,还有以下开源 TTS 数据可供参考: |汇总|大量语音数据的汇总| |||| |TTS|WenetSpeech4TTS|12,800 小时的配对音频 文本数据| |TTS| |TTS| |TTS|赛博朋克 2077|请注意版权问题!| |TTS中文| |TTS中文| |TTS中文| |TTS中文| |TTS中文|zhvoice|3200 说话人 900 小时,用于声音复刻,合成,识别等| |TTS英文|LibriTTS|基于 Librispeech 筛选而来,更适合用于做 TTS,采样率 24k,大约 585 小时 2,456 人,其中的 trainclean100 包含 53.8 小时/247 个发言人| |TTS英文|LJ Speech|大约 24 小时|
2024-12-16
声音复刻
声音复刻相关内容如下: GPTSoVITS 实现 AIyoyo 声音克隆: 前置数据获取处理:选择音频,开启切割;有噪音时,进行降噪处理;降噪处理完成,开启离线 ASR。 GPTSowitsTTS:训练集格式化需开启一键三连,耐心等待;包括微调训练、推理,推理时开始推理刷新模型选择微调后的模型yoyo,成功后会出现新的 URL 表明声音微调完毕。 声音复刻:可以开启声音复刻之旅,能够实现跨多语种语言的声音。 实践的样本:AIyoyo 普通话满江红 。 GPTSoVITS 实现声音克隆: GPTSoVITS 是一个声音克隆和文本到语音转换的开源 Python RAG 框架。只需 1 分钟语音即可训练一个自己的 TTS 模型,5 秒数据就能模仿,1 分钟的声音数据就能训练出高质量的 TTS 模型,完美克隆声音。主要特点包括零样本 TTS、少量样本训练、跨语言支持、易于使用的界面、适用于不同操作系统、提供预训练模型。 GitHub: 。 TTS 数据整理: 开源 TTS 数据汇总: 大量语音数据的汇总: TTS WenetSpeech4TTS:12,800 小时的配对音频 文本数据: TTS 米哈游 星穹铁道:包含中文和日语英文韩语,请注意版权问题! TTS 米哈游 原神:包含中文和日语英文韩语,请注意版权问题! TTS 赛博朋克 2077:请注意版权问题! TTS 中文 baker 标贝女声:12 小时 TTS 中文 Aishell3:85 小时多说话人数据 TTS 中文 DiDiSpeech:500 人 60 小时,但目前已经 404 无法再获取 TTS 中文 OpenSLR:提供各种语言的合成、识别等语料 TTS 中文 zhvoice:3200 说话人 900 小时,用于声音复刻,合成,识别等 TTS 英文 LibriTTS:基于 Librispeech 筛选而来,更适合用于做 TTS,采样率 24k,大约 585 小时 2,456 人,其中的 trainclean100 包含 53.8 小时/247 个发言人 TTS 英文 LJ Speech:大约 24 小时
2024-12-16
声音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用方法: 特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出来的声音更接近原声且更自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,可直接下载使用。 使用: 先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits 克隆声音,做出文案的音频。 注册 colab,按照步骤注册即可:https://colab.research.google.com/scrollTo=Wf5KrEb6vrkR&uniqifier=2 。新建笔记本,运行脚本启动 GPTSo VITS,整个过程比较漫长,需要耐心等待,可以整个脚本一起运行,也可以一段一段运行。运行过程包括克隆项目代码库、进入项目目录、安装 Python 依赖包、安装系统依赖、下载 NLTK 资源、启动 Web UI。运行成功后会出现 public URL。 训练音频准备与上传。 相关资源: GitHub:https://github.com/RVCBoss/GPTSoVITS 视频教程:https://bilibili.com/video/BV12g4y1m7Uw/ 基础 wav2lip+高清修复整合包下载地址:https://github.com/Rudrabha/Wav2Lip 产品:https://synclabs.so/
2024-12-13
如何克隆自己的声音
要克隆自己的声音,以下是一些常见的方法和相关信息: 使用 GPTSoVITS: 前置数据获取处理:选择音频,开启切割;有噪音时进行降噪处理,降噪处理完成后开启离线 ASR。 GPTSowitsTTS:训练集格式化,包括一键三连和耐心等待;进行微调训练,开启 SoVITS 训练和 GPT 训练;进行推理,开始推理、刷新模型、选择微调后的模型。 成功标志:出现新的 URL 说明自己的声音微调完毕。 微软发布的 Personal Voice: 只需提供 1 分钟的语音样本,几秒钟内即可克隆该样本语音。 生成的 AI 语音支持中文、西班牙语、德语等多达 100 种不同语言的语音输出。 使用设备端机器学习技术,确保用户信息私密安全,与 LiveSpeech 无缝集成。 微软在生成的 AI 语音中增加了水印安全和认证措施,一种特殊的水印被添加到生成的语音中,以便用户和客户识别。 该功能将在西欧、美国东部和东南亚地区率先上线,并于 12 月 1 日上线公共预览版。 相关资源: GPTSoVITS 的 GitHub: 视频教程: 希望以上内容对您有所帮助。
2024-12-10
克隆自己的声音
以下是关于克隆自己声音的相关信息: GPTSoVITS: 这是一个声音克隆和文本到语音转换的开源 Python RAG 框架。 只需 1 分钟语音即可训练一个自己的 TTS 模型。 5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音。 主要特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,您可以直接下载使用。 GitHub: 视频教程: 前置数据获取处理: 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待即可。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 成功:出现新的 URL,说明您自己的声音微调完毕,然后可以进行使用。 声音复刻: 可以实现跨多语种语言的声音。 微软发布 Personal Voice: 您只需要提供 1 分钟的语音样本,它就可以在几秒钟内克隆该样本语音,复制出一模一样的 AI 语音。 生成的 AI 语音支持中文、西班牙语、德语等多达 100 种不同语言的语音输出。 Personal Voice 使用设备端机器学习技术,确保用户信息私密安全,同时与 LiveSpeech 无缝集成,让用户可以在与其他人交流时使用 Personal Voice AI 语音说话。 微软在生成的 AI 语音中增加了水印安全和认证措施。 一种特殊的水印被添加到生成的语音中,以便用户和客户可以识别出语音是使用 Azure AI Speech 合成的,以及具体使用了哪种语音。 该功能将在西欧、美国东部和东南亚地区率先上线,并于 12 月 1 日上线公共预览版。 官方网站:
2024-12-10
智能送餐机器人大数据分析
很抱歉,目前知识库中没有关于智能送餐机器人大数据分析的相关内容。但一般来说,智能送餐机器人大数据分析可能涉及以下方面: 1. 送餐路径优化:通过分析机器人的运动轨迹和送餐时间,优化送餐路径,提高送餐效率。 2. 客户需求预测:根据历史订单数据,预测不同区域和时间段的客户需求,合理安排机器人的配送任务。 3. 机器人性能评估:分析机器人的运行数据,如电池寿命、故障频率等,评估其性能,以便进行维护和改进。 4. 服务质量分析:通过收集客户的反馈数据,分析机器人送餐的服务质量,如准时性、准确性等,从而进行针对性的提升。 希望以上内容能为您提供一些思路和方向。
2024-12-19
推荐一个生成bpm系统产品原型图的ai工具,可以实现文字输入,甄别分析后直接生成原型图,并且导入Figma或者Axure可以二次编辑
以下是为您推荐的可生成 BPM 系统产品原型图、用于产品原型设计或绘制示意图的 AI 工具: 1. 即时设计:https://js.design/ 这是一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 5. UIzard:是一个利用 AI 技术生成用户界面的工具,它可以根据设计师提供的信息快速生成 UI 设计。 6. Figma:是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma 的社区也开发了一些 AI 插件,用于增强设计流程。 7. Sketch:是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用 AI 技术来辅助设计工作,例如自动生成设计元素等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-17
推荐一个生成bpm系统产品原型图的so工具,可以实现文字输入,甄别分析后直接生成原型图,并且导入Figma或者Axure)
目前暂时没有完全符合您需求的直接生成 BPM 系统产品原型图,并能实现文字输入、甄别分析后直接生成原型图且导入 Figma 或者 Axure 的工具。但您可以关注一些相关领域的发展动态,比如 Mockplus、Adobe XD 等工具,它们在原型设计方面具有一定的优势,或许未来会推出满足您需求的功能。
2024-12-17
AI 可以分析文件吗
AI 可以分析文件。在金融服务领域,生成式 AI 模型能够迅速汇总个体关键信息,预测洗钱者,进行更快的文档分析,用于培训和教育等,使合规工作更高效。 在专利审查方面,AI 也得到了广泛应用,例如: 1. 专利检索与分类:通过自然语言处理和机器学习算法,自动识别和分类专利文献。如 Google Patents、IBM Watson for IP 等平台。 2. 专利分析和评估:分析专利文本,评估新颖性和创造性,预测授权可能性。如 TurboPatent、PatentBot 等平台。 3. 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。如 Specifio、PatentPal 等平台。 4. 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。如 Aulive、AIpowered image recognition tools 等平台。 在处理文档和数据方面,对于数据可以使用代码解释器,对于文档,Claude 2 适用于大型文档或同时处理多个文档,Bing 侧边栏适用于较小的文档和网页。代码解释器是一种 GPT4 模式,允许上传文件、编写和运行代码、下载结果等,可用于执行程序、数据分析等,尽管使用它进行未经培训的分析存在风险,但仍给许多专家留下深刻印象。
2024-12-15
是否有针对访谈收集的数据做分析的智能体或应用?
目前存在针对访谈收集的数据做分析的智能体或应用。例如,在个人实操案例中,有人为了做 AI 访谈,搭建了一个 AI 访谈 bot,希望借此了解朋友们做访谈的意愿和产出内容的质量水平,同时还希望这个 bot 具备内容推荐的能力。 智能体在各种应用中扮演重要角色,如自动驾驶中感知周围环境并做出驾驶决策,家居自动化中根据环境和用户行为自动调节智能设备,游戏 AI 中的对手角色和智能行为系统,金融交易中的智能交易算法,客服聊天机器人通过自然语言处理提供自动化客户支持,以及机器人中集成的智能控制系统等。 设计和实现一个智能体通常涉及定义目标、感知系统、决策机制、行动系统、学习与优化等步骤。首先要明确智能体需要实现的目标或任务,设计传感器系统采集环境数据,定义决策算法,设计执行器或输出设备,对于学习型智能体还需设计学习算法以从经验中改进。
2024-12-15
如何利用GPT进行逻辑回归分析
利用 GPT 进行逻辑回归分析可以参考以下步骤: 1. 首先,在数据准备阶段,明确需要分析的数据内容,例如用户描述想分析的内容,或者上传相关文件并描述其数据、字段意义或作用等,以辅助 GPT 理解数据。 2. 对于 SQL 分析,后台连接数据库,附带表结构信息让 GPT 输出 SQL 语句,校验其是否为 SELECT 类型,其他操作如 UPDATE/DELETE 绝不能通过。校验通过后执行 SQL 返回结果数据,再将数据传给 GPT(附带上下文),让其学习并分析数据。 3. 在与 GPT 的交互过程中,不断输入真实的业务需求场景以及现存的问题,帮助 GPT 更好地理解需求,例如输入旧代码、需求和问题,让 GPT 给出针对性的优化建议。 4. 根据 GPT 给出的结果进行调试和优化,可能需要多轮的输入输出(类似讨论),不断强化 GPT 对真实需求的认知。 5. 例如在 SQL 优化方面,GPT 可能提出如每次更新 1 天而不是 30 天的数据、创建中间结果表存储非二次计算的数据、利用 CASE WHEN 合并查询约束条件基本相同的指标等建议。然后根据这些建议结合自身的能力进行代码优化和测试。 需要注意的是,整个过程可能比较繁琐,需要有一定的耐心,包括查资料、处理报错、纠正 GPT、不断补充需求细节等。
2024-12-13