直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

LLM解决方案报告

回答

以下是关于 LLM 解决方案的相关内容:

  • 对抗性提示的防御策略:可利用 LLM 检测对抗提示并过滤,如 Armstrong 和 Gorman(2022)提出的方案,需先定义提示评估器,已准备相关笔记本供尝试。
  • Apple Intelligence 中智能应用的提示词:包括帮助回复邮件的提示词和总结邮件的提示词,其中 Apple 解决 LLM 幻觉问题的方式是在提示词中加“Do not hallucinate”,其效果存疑。
  • LLM 应用程序的新兴架构:原文地址为 https://a16z.com/2023/06/20/emerging-architectures-for-llm-applications/,发表于 2023 年 6 月 20 日。文中分享了新兴 LLM 应用程序堆栈的参考架构,此工作基于与相关人员的对话。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

对抗性提示

我们知道LLM可以是复杂、通用和强大的系统,可以在广泛的任务上表现出色。LLM也可以用于或微调以执行特定任务,例如知识生成([Liu等人,2022(opens in a new tab)](https://arxiv.org/pdf/2110.08387.pdf))和自我验证([Weng等人,2022(opens in a new tab)](https://arxiv.org/abs/2212.09561v1))。同样,LLM可以用于检测对抗提示并将其过滤掉。[Armstrong和Gorman(2022)(opens in a new tab)](https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking)提出了一个有趣的解决方案。以下是它在实践中的样子。第一步是定义提示评估器。在文章中,作者提出了一个chatgpt-prompt-evaluator,看起来像下面这样:Prompt:这是一个有趣的解决方案,因为它涉及定义一个特定的代理,负责标记对抗提示,以避免LM响应不良输出。我们已经为您准备了[此笔记本](https://www.promptingguide.ai/zh/notebooks/pe-chatgpt-adversarial.ipynb),供您尝试此策略。

Apple Intelligence 里面各种智能应用的提示词已经被曝光了

[title]Apple Intelligence里面各种智能应用的提示词已经被曝光了帮助回复邮件的提示词(图二)你是一个帮助用户回复邮件的助理。请根据提供的回复片段起草一个简洁自然的回复。请将答案限制在50个单词以内。不要产生或编造虚假信息。保留输入邮件的语气。比较搞笑是Apple解决LLM幻觉问题是在提示词里面加一句“Do not hallucinate”,严重怀疑其是否有效!总结邮件的提示词(图三)在3句话内总结所提供的邮件,不超过60个单词。不要回答邮件中的任何问题。很简洁,用“3句话”和“60个单词”来限定总结的长度不要太长,虽然无法严格遵守,但是应该也还行。

LLM 应用程序的新兴架构

[title]LLM应用程序的新兴架构原文地址:https://a16z.com/2023/06/20/emerging-architectures-for-llm-applications/译者:通往AGI之路,若有瑕疵之处,请在段落评论中斧正,谨此致谢发表时间:2023年6月20日大型语言模型(LLM)是构建软件的强大新基础设施。但由于它们太新了——并且与普通计算资源的行为如此不同——如何使用它们并不总是显而易见的。在本文中,我们将分享新兴LLM应用程序堆栈的参考架构。它展示了我们见过的AI初创公司和成熟的科技公司使用的最常见的系统、工具和设计模式。这个堆栈还处于非常早期的阶段,可能会随着底层技术的进步而发生重大变化,但我们希望它现在能作为使用LLM的开发人员的有用参考。这项工作基于与AI初创公司创始人和工程师的对话。我们尤其依赖于以下人员的意见:Ted Benson、Harrison Chase、Ben Firshman、Ali Ghodsi、Raza Habib、Andrej Karpathy、Greg Kogan、Jerry Liu、Moin Nadeem、Diego Oppenheimer、Shreya Rajpal、Ion Stoica、Dennis Xu、Matei Zaharia和Jared Zoneraich。感谢你们的帮助!

其他人在问
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
目前最强 llm
目前在大型语言模型(LLM)领域,Llama2 70B 可能是最强大的开源权重模型。它由 Meta.ai 发布,包含 700 亿个参数,模型的权重、架构和相关论文均已公开,在文件系统上表现为两个文件:一个包含参数的文件,以及一段运行这些参数的代码。参数文件大小约 104GB,采用 float 16 数据类型。 此外,GPT4V 是基于最先进的 LLM 并使用大量多模态数据训练的具有视觉能力的先进模型,在理解和处理不同输入模态的任意组合方面表现出色,支持多种输入和工作模式。 需要注意的是,尽管语言模型能力令人印象深刻,但仍存在一些限制,如生成的“幻觉”问题,在需要高级推理能力的任务上存在困难,还需要更具挑战性和强大的评估来衡量其真正的理解能力。
2024-11-15
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
集成LLM的工具
以下是关于集成 LLM 的工具的相关内容: 一、“手臂和腿部”:赋予模型使用工具的能力 1. 从知识挖掘转向行动导向,增加模型使用工具的能力,有望在消费者和企业领域实现一系列用例。 对于消费者,LLMs 可能给出菜谱建议并订购食材,或推荐早午餐地点并预订餐桌。 在企业领域,创始人可接入 LLMs 使应用程序更易用,如在 Salesforce 等应用中,用户能用自然语言更新,模型自动更改,减少维护 CRM 所需时间。 2. LLM 虽对常见系统有复杂理解能力,但无法执行提取的信息。不过,公司在不断改善其使用工具的能力。 老牌公司如必应、谷歌和初创公司如 Perplexity、You.com 推出搜索 API。 AI21 Labs 推出 JurassicX,解决独立 LLMs 缺陷。 OpenAI 推出 ChatGPT 插件测试版,允许与多种工具交互,在 GPT3.5 和 GPT4 中引入函数调用,允许开发者将 GPT 能力与外部工具链接。 二、无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 2. 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 提示 LLM 如何理解和使用工具,编写时用无关紧要工具作示例避免混淆。 tools_instructions 是通用工具字典转换成 LLM 可读的工具列表,可动态调整。 REUTRN_FORMAT 定义调用 API 格式。 3. 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。通过以上提示词工程,可让无 tool calling 能力的 LLM 获得稳定的该能力。
2024-11-12
摘要总结作为 llm 训练的下游任务,一般的训练流程是怎样的
作为 LLM 训练的下游任务,一般的训练流程如下: 1. 首先从大量文本数据中训练出一个基础 LLM。 2. 随后使用指令和良好尝试的输入和输出来对基础 LLM 进行微调和优化。 3. 接着通常使用称为“人类反馈强化学习”的技术进行进一步细化,以使系统更能够有帮助且能够遵循指令。 在训练过程中,会涉及到一些相关的理论探讨和评价指标: 理论探讨方面,如在推理阶段对 InContext Learning 能力的运行分析,将其视为隐式微调,通过前向计算生成元梯度并通过注意力机制执行梯度下降,且实验表明 LLM 中的某些注意力头能执行与任务相关的操作。 评价指标方面,entropylike 指标(如 crossentropy 指标)常用于表征模型的收敛情况和测试集的简单评估(如 Perplexity 指标),但对于复杂的下游应用,还需更多指标,如正确性(Accuracy)、信息检索任务中的 NDCG@K 指标、摘要任务中的 ROUGE 指标、文本生成任务中的 BitsperByte 指标、不确定性中的 ECE 指标、鲁棒性(包括 invariance 和 equivariance)、公平性、偏见程度和有毒性等。
2024-11-07
如何学会ollma dify
以下是关于学习 Ollama 的详细步骤: 1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。 2. 安装 Ollama : 官方下载地址:https://ollama.com/download 。 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。 3. 启动 Ollama : 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 5. 使用 Ollama 运行本地大模型: 安装完成 ollama 后,在命令行中运行相应命令。 可通过查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
2024-11-06
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
售后技术支持的AI解决方案
以下是为您提供的售后技术支持的 AI 解决方案: 在汽车售后场景中,主要存在以下问题: 1. 服务顾问缺少专业知识,无法提前协助车主评估车辆问题,并反馈标准化解决方案。 2. 维修技师在车辆检查和车辆故障分析方面依赖经验水平,缺少辅助分析的工具和直观的辅助指引。 3. 维修方案由技术支持人工编写,输出标准无法保障。 针对这些问题,AI 解决方案具有以下功能: 1. 解答问题:当用户提出问题,它像专业的售后顾问,通过询问细节给出初步判断,涵盖问题原因、维修方向、价格与时间预估。然后转变为技术维护人员角色,分析问题原因,列出具体检查步骤,等待工程师反馈结果后,给出精准解决方案及操作视频。 2. 文档输出:问题解决后,生成维修报告给用户,以及案例归档文档,并将其存入 AI 知识库,丰富知识库内容,方便后续查询和提供更专业的回答。 3. 智能录入:AI 知识库功能强大,不仅支持单独文本录入还支持链接录入。通过识别一篇文章,能智能解析分解出多个知识点并录入知识库,对归档文档的解析录入进一步丰富了知识库。 此外,还有以下 AI 产品案例和投稿与工作场景相关: 1. 销售:定制销售解决方案,涉及企业产品和服务内容、客户需求和参数、营销方案和推广策略、数据处理和模型训练、客户满意度和营销效率、往期营销方案。 2. 客服:定制客服话术,包含产品知识、使用方法、售后服务、售后维修、支付方式、支付流程、产品购买、产品配送、客户投诉、客户建议、政策法规、使用注意事项、客服身份等关键词库。 3. HR:团队绩效管理,根据团队和个人的绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 4. HR:面试工具,开发了一个使用 GPT4 技术的实时转录工具,帮助求职者在面试中生成完美的回答。 5. 科学:研制采摘机器人,荷兰代尔夫特大学和瑞士洛桑联邦理工学院(EPFL)科学家借助 ChatGPT 设计并研制出了一款番茄收割机器人。
2024-10-29
cozeAPI身份验证无效的解决方案
很抱歉,目前知识库中没有关于“cozeAPI 身份验证无效”的解决方案。但一般来说,遇到身份验证无效的问题,您可以尝试以下几种常见的解决方法: 1. 检查您输入的认证信息是否准确,包括用户名、密码、密钥等。 2. 确认您的账号是否已被激活或处于正常状态。 3. 检查网络连接是否稳定,有时网络问题可能导致验证失败。 4. 查看相关的 API 文档,了解身份验证的具体要求和可能的错误情况。 5. 尝试重新生成或更新认证凭证。 如果问题仍然存在,建议您进一步查阅相关技术资料或联系 API 提供方的技术支持获取更准确的帮助。
2024-10-14
oppo手机无法安装chatgpt,搜了一圈也找不到解决方案
以下是关于安卓和苹果系统安装 ChatGPT 的方法: 安卓系统: 1. 到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,别下错了。 2. 这步骤可能遇到“google play 未在您所在的地区提供此应用”的问题。经过各种方法测试,找到路径如下: 在 google play 点按右上角的个人资料图标。 依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。 在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美,最后的结果参考相关红款标识信息。 如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 苹果系统: 中国区正常下载不了,需要切换到美区才可以下载。美区 AppleID 注册教程参考如下知乎链接: 。最终在 AppleStore 搜到 chatgpt 结果如下,下载安装即可,注意别下错啦。
2024-09-25
企业内部知识库和 AI 问答结合,有哪些成熟的解决方案,或者产品推荐?
以下是企业内部知识库和 AI 问答结合的一些成熟解决方案和产品推荐: Contextual Answers:这是一个端到端的 API 解决方案,其答案完全基于组织知识,能避免“幻觉”。全球信息服务提供商 Clarivate 与其合作,将其应用于图书馆解决方案套件,为学生、教师和研究人员提供基于策划和可信学术内容的问题答案。 职业规划类产品:结合用户个人情况和市场需求制定详细职业发展计划,包括短、中、长期目标,帮助用户在 AI 时代找到职业定位。其核心构思在于利用企业已有知识积累结合大模型能力,为用户提供准确简洁答案。具体通过创建企业私有知识库收录问答记录和资料,利用大模型处理用户咨询问题,确保回答准确一致,必要时提供原回答完整版,还能对接人工客服,在智能助手无法解决问题时快速转接,提升服务质量和客户满意度。
2024-09-14
ai 做 ppt 的软件或者解决方案有哪些?
以下是一些 AI 做 PPT 的软件或解决方案: 1. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,提高文档编辑效率。网址:https://zhiwen.xfyun.cn/ 2. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 3. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ 4. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。网址:https://www.mindshow.fun/ 5. AiPPT.cn:“一分钟一键生成 PPT”,基于自然语言处理技术的语义分析快速生成演示文稿,具有图像识别技术的 AI 插件实现智能化模板生成和字体排版,基于数据分析技术的个性化推荐提供量身定制的模板和素材,通过国家网信办 PPT 生成算法备案,获 A 股上市公司视觉中国战略投资,拥有 5 亿+版权素材库和 10 万+PPT 模板。 目前市面上大多数 AI 生成 PPT 按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 目标市场主要是市场、运营、销售、人力、财务、行政、技术、产品、总助、公务员、学生、老师等基层及中高层管理岗位人员。商业模式靠订阅工具业务赚钱,为全岗位职场人提供 10 余款 AIGC 工具,围绕企业内容工作流,满足工作中的 PPT、文案、H5、平面/视频制作、新媒体排版等高质量内容的创作需求。此外还有 AutoAgents.ai 。
2024-08-20
RAG研究报告有哪些
以下是一些关于 RAG 的研究报告: 1. 《RAG 系统开发中的 12 大痛点及解决方案》:研究了开发检索增强生成(RAG)系统时遇到的 12 个主要难题,并提出了相应的解决策略。通过将挑战和解决方法并列在一张表中,更直观地展示了设计和实施 RAG 系统面临的复杂挑战。 2. 《小七姐:精读翻译《提示词设计和工程:入门与高级方法》》:提到在解决预训练大型语言模型(LLM)的限制方面,RAG 成为关键创新,通过动态整合外部知识扩展了 LLM。还介绍了 RAG 感知提示词技术,如 FLARE 以创新方法增强 LLM 性能。 3. 《通过增强 PDF 结构识别,革新检索增强生成技术》:包含对 PDF 识别对 RAG 影响的实验研究,通过列举 ChatDOC 在查询特斯拉用户手册中的具体案例,突出了 ChatDOC 解析方法在处理表格和呈现方式上的有效性。
2024-11-20
中国人工智能产业研究报告
以下是为您提供的中国人工智能产业相关研究报告: 《中国生成式 AI 行业市场热点月度分析(2024 年 5 月)》:行业移动端渗透率达 12%,月活用户超 4000 万,用户画像以高学历、白领为主。可通过获取。 《中国新一代人工智能科技产业发展报告(2024)》:指出中国人工智能产业正从“极化”向“扩散”发展。报告基于 4311 家 AI 企业的数据分析,展示了中国 AI 产业的创新版图。可通过获取。 《数说安全:2024 安全大模型技术与市场研究报告》:深入探讨了 AIGC 大语言模型在网络安全领域的应用和影响。可通过获取。 《微盟&爱分析:2024 年企业 AI 应用趋势洞察报告》:通过案例分析展示了 AI 技术如何助力企业提升生产力,并预测 AI 将在企业级应用中持续拓展服务边界,同时 AI Agent 将为企业级 AI 应用带来新想象空间。可通过获取。
2024-11-15
AI编程调查报告
很抱歉,目前知识库中没有关于 AI 编程调查报告的相关内容。但一般来说,一份完整的 AI 编程调查报告可能会包含以下几个方面: 1. 引言:介绍调查的背景、目的和范围。 2. AI 编程的现状:包括当前主流的编程语言、框架和工具,以及它们的应用领域和发展趋势。 3. 技术挑战与解决方案:分析在 AI 编程中遇到的技术难题,如数据处理、模型训练、优化算法等,并探讨相应的解决办法。 4. 人才需求与培养:研究市场对 AI 编程人才的需求情况,以及相关的教育和培训资源。 5. 案例分析:列举一些成功的 AI 编程项目案例,展示其技术实现和应用效果。 6. 未来展望:对 AI 编程的未来发展方向进行预测和展望。 您可以根据具体的调查重点和需求,进一步明确和细化报告的内容。
2024-11-12
请根据提供的AI工具网址,搜索常用的AI工具,实际操作AI工具,记录使用过程中的感受和发现,提交一份体验报告,描述工具的使用过程和个人感受,并就AI相关的热点话题,AI伦理、AI与就业等简要发表自己的看法。
以下是一份关于常用 AI 工具的体验报告: 一、AI 工具使用过程和感受 1. 超级简历优化助手 使用过程:用户上传简历,工具分析内容并提供优化建议。 个人感受:对于求职者来说,能够针对性地提升简历质量,提高求职成功率,操作简单易懂。 2. 酷家乐等设计软件 使用过程:用户上传户型图,软件通过 AI 生成多种室内设计方案。 个人感受:为室内设计提供了便捷和丰富的创意,节省了设计时间和精力。 3. Amper Music 使用过程:用户提出需求,工具生成旋律和编曲。 个人感受:对音乐创作者有很大的辅助作用,激发创作灵感。 4. 松果倾诉智能助手 使用过程:通过文字或语音与用户交流,提供情感咨询。 个人感受:在情感支持方面提供了及时的帮助和建议。 5. 小佩宠物智能设备 使用过程:实时监测宠物的活动、饮食等状况,提供健康预警。 个人感受:让宠物主人能更方便地关注宠物健康。 6. 马蜂窝智能行程规划 使用过程:根据用户输入的目的地、时间等因素定制旅游路线。 个人感受:为旅行规划提供了个性化的方案,节省了规划时间。 7. 作业帮智能辅导 使用过程:根据学生的学习情况提供针对性的学习方案。 个人感受:有助于学生获得更贴合自身需求的学习辅导。 8. AI 游戏道具推荐系统 使用过程:在游戏中分析玩家风格和进度,推荐合适道具。 个人感受:提升了游戏体验,使玩家能更有效地获取所需道具。 9. AI 天气预报分时服务 使用过程:利用彩云天气提供每小时的天气预报。 个人感受:为出行和活动安排提供了更精准的参考。 10. AI 医疗病历分析平台 使用过程:分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 个人感受:有助于提高医疗诊断的准确性和效率。 11. AI 会议发言总结工具 使用过程:在会议中自动总结发言者的主要观点和重点内容。 个人感受:方便会议记录和回顾,提高工作效率。 12. AI 书法作品临摹辅助工具 使用过程:识别书法作品的笔画和结构,为用户提供临摹指导和评价。 个人感受:对书法爱好者的临摹学习有一定的帮助。 二、关于 AI 相关热点话题的看法 1. AI 伦理 随着 AI 技术的广泛应用,数据隐私、算法偏见等伦理问题日益凸显。需要建立健全的法律法规和伦理准则,确保 AI 的发展符合人类的价值观和利益。 2. AI 与就业 AI 的发展可能会导致一些传统岗位的减少,但同时也会创造新的就业机会,如 AI 开发、维护和管理等。重要的是通过教育和培训,提升劳动者的技能,以适应新的就业需求。 三、健身的 AI 产品 1. Keep:中国最大的健身平台,提供全面的健身解决方案,帮助用户实现健身目标。 2. Fiture:沸彻魔镜集硬件、丰富课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时提供指导。
2024-11-11
AI音乐调研报告
以下是为您提供的 AI 音乐调研报告: 一、2.21 资讯 生成式人工智能对音乐领域的影响研究:报告链接为 https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf 。该研究由 GEMA 和 SACEM 委托 Goldmedia 进行,探讨了生成式 AI 在音乐领域的快速发展及其对欧洲创意产业的广泛影响,强调了 AI 对创作者既是竞争源也是创新工具,提出确立可靠法律框架、保护知识产权、加强透明度和监管的必要性。 谷歌推出 MusicRL:生成符合人类偏好的音乐。 使用 Beatoven AI 的文生音乐功能给视频配乐。 HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑。 Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型。 二、2.22 资讯 通过音乐 AI 计算捕捉创造力:加州大学圣迭戈分校(UC San Diego)的 Jacob School of Engineering、音乐系和 Qualcomm 研究所共同发布的研究报告中,展示了通过计算方法捕捉和量化音乐创造力的创新性研究。利用 Multitrack Music Transformer,测量了音乐声部间的互动量,并与专业音乐家的评估对比,验证了量化方法的准确性和有效性,为理解人类与 AI 在音乐创作中的互动提供新视角,为未来音乐 AI 的发展和应用奠定理论基础。 走向音频语言建模——概述。 通过扩散模型的时变反演进行音乐风格迁移。 Nendo AI:让人又爱又恨的 AI 音频平台。 RipX DAW:混音师的理想选择。 三、3.4 资讯 接触不同类型的音乐会影响大脑如何解读节奏:研究显示人类大脑听音乐时倾向于识别和产生由简单整数比率组成的节奏,不同社会中偏好的比率大相径庭。该研究基于在 15 个国家进行的大规模研究,涉及 39 组参与者,许多来自传统音乐包含独特节奏模式的社会。研究揭示了音乐节奏感知和产生中存在跨文化的变异性,特定文化中的特定节奏在其音乐心理表征中占据重要地位。链接:https://thedigitalinsider.com/exposuretodifferentkindsofmusicinfluenceshowthebraininterpretsrhythm/
2024-11-09
分析报告生成
以下是关于分析报告生成的相关内容: 在生成报告方面,若想筛选指定时间段内的所有聊天对象来生成报告,可以使用相应的 SQL 语句,并通过获取去重后的微信群名来实现。批量化参数后能快速生成多篇群分析报告。应用效果很大程度依赖于 prompt 的优劣,可参考 ChatGPT 的最佳实践或吴恩达的免费课,学会高效提问很重要。 对于品牌舆论传播的分析报告,案例中的步骤包括:明确分析目标和范围、搜集与分析数据、生成舆论传播概括报告、提出建议、草拟危机声明。 此外,满足时效性的报告可以通过整合多部门协作,从敏感词挖掘到舆情分析报告自动生成,实现舆情监控全流程自动化,从而大幅提升信息流转与办公效率。
2024-11-05