Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

常用的prompt的自动化词条组合有哪些?

Answer

以下是一些常用的 prompt 自动化词条组合:

  1. 情境(Situation):任务(Task):行动(Action):结果(Result):这是一个基础的提示词框架,可作为入手选择。
  2. 对于 Dynamic Prompts 插件,魔法提示词能自动生成补充,如勾选魔法提示词并设置相关参数,包括创意度、模型选择等。以 MagicPrompt 模型为例,能根据输入的关键词生成丰富的补充内容。
  3. 在 Prompt 的基础篇中,每个单独的提示词叫 tag(关键词),支持英语及 emoji 。语法规则包括用英文半角逗号分隔 tag ,改变 tag 权重有两种写法,还能进行 tag 的步数控制。

如果您觉得这些例子过于复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版微信群运营文案、安排减脂餐、列学习计划、设计商务会议调研问卷等,来思考能帮助简单自动化的场景。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Prompt 喂饭级系列教程 小白学习指南(二)

[title]小七姐:Prompt喂饭级系列教程小白学习指南(二)于是这个提示词解决了你自己,和任何收到你Prompt的人微调几个关键信息就能自动让GPT或者Kimi帮你阅读一篇论文而且生成不错的总结啦!如果你觉得这些例子对你来说还是过于复杂了,请你结合你自己的生活或者工作场景来想一个能帮你简单自动化的场景:自动给班级里的每个孩子起个昵称?自动排版你微信群经常发的一些运营小文案?自动帮你安排周一到周日的减脂餐?帮你列一个清晰的学习计划,day1-day7?帮你的下一次商务会议设计一个调研问卷?……第三步、选一个好上手的提示词框架来帮你开启你第一次有效的编写如果你这时候问什么是提示词框架,那说明你第一课没认真学,回去复习吧。对框架的理解和运用是非常重要的一部分,参考上图,来源:[prompt-engineering/prompt-patterns:Prompt编写模式:如何将思维框架赋予机器,以设计模式的形式来思考prompt(](https://github.com/prompt-engineering/prompt-patterns)[github.com](http://github.com)[)](https://github.com/prompt-engineering/prompt-patterns)提示词框架有很多,有的简单有的复杂,你可以选一个看起来不那么难的先入手,比如可以从非常基础的:情境(Situation):任务(Task):行动(Action):结果(Result):开始。如果你拿到我给你的这个由四个词语组成的提示词框架还是觉得无从下手,你可以试试这样:恭喜你,就在刚才你已经写出你的第一个提示词了,它是:

Dynamic Prompts插件,魔法提示词由魔法帮你补全(插件篇)

[title]Dynamic Prompts插件,魔法提示词由魔法帮你补全(插件篇)[heading1]魔法关键词如果说前面分离生成,组合生成可以手动操作,不算特别常用的话,这部分就是本篇的重点了。因为被称为魔法的关键词也能用别的魔法自动生成补充了。勾选上魔法提示词,加到多少个词自己设。创意度可以理解就是与原提示词的贴切程度,进行过图生图的也好理解。前面说的下模型在这里就需要选择提示词的模型了,一般选中后都会后台下载,每个大概800m,因为安装了路径很蛋疼,这里我就不提供手动下载的方式了。可以通过上面的url去详细了解其他的prompt模型。以MagicPrompt模型为例(官方说这个模型Lexica.art那训练8000个关键词。举例"dogs playing football":dogs playing football,in the streets of a japanese town at night,with people watching in wonder,in the style of studio ghibli and makoto shinkai,highly detailed digital art,trending on artstationdogs playing football,in the background is a nuclear explosion.photorealism.hq.hyper.realistic.4 k.award winning.dogs playing football,in the background is a nuclear explosion.photorealistic.realism.4 k wideshot.cinematic.unreal engine.artgerm.marc simonetti.jc leyendecker其他设置,包括不希望出现的prompt,赋予prompt权重也都很好理解。需要注意的是如果你只是在找寻灵感,目标不明确,可以勾选“手气不错”(I'm feeling lucky)会得到一些让人意外的图片。那么,我们实际跑一下看?<br>|关键词1girl,school uniform,white shirt with blue collars,blue shorts,dynamic posture,|通过动态提示词,我们得到了若干组魔法补充后的提示词,如果勾选“手气不错”还有更多意想不到的结果哟。

Prompt的专场教程-基础篇

一段指令,用于指挥AI生成你所需要的内容,每个单独的提示词叫tag(关键词)。[heading2]支持的语言[content]支持的语言为英语(不用担心英语不好的问题,[点击蓝字进入提示词字典](https://ops.jk.cm/#/apps/ops/))另外注意emoji也可以用的🥰,好赞🫡,但是我不造用了emoji可以有什么好处hhh。[heading2]语法规则[content]1.用英文半角符号逗号,来分隔tag。注意逗号前后有空格或者换行都不影响效果,示例见下方代码块2.改变tag权重:注意tag的顺序越靠前对于SD来说权重越大,但是依旧可以给每个位置上的tag单独设置权重。而且还有两种写法。2.1.(tag:权重数值):数值从0.1~100,默认状态是1,低于1就是减弱,大于1就是加强2.2.(…(tag)…)/[…[tag]…]:每加一层()括号,权重就重1.1倍,每加一层[]括号就反向减弱1.1倍.比如说括号加两层是1.1*1.1=1.21倍,三层是1.331倍……示例见下方代码块,两种方法都可以用,第一种清晰明确,第二种方便快捷。3.进行tagde步数控制(高级玩法,快试一试,可以秀了):就是SD先按你输入的这个tag1开始生成,然后在达到你设定的步数之后,tag1停止产生作用,此时tag2再参与到对内容生成的影响。[tag1:tag2:数字],数字大于1理解为第X步前为tag1,第X步后变成tag2,数字小于1理解为总步数的百分之X前为tag1,之后变成tag2,示例见下方代码,代码块的#后为注释。注意这两种方法各有优劣,建议按需灵活调用。

Others are asking
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 4. 课件中的 Prompt 之术“三板斧”: 分配角色。 给出示例(fewshots)。 思维链(ChainofThought)。
2025-02-17
prompt
以下是关于 prompt 的相关知识: 1. 提示简介: 提示是您给 Claude 的文本,用于引发相关输出,通常以问题或指示的形式出现。例如,“User:Why is the sky blue? 为什么天空是蓝色的?”,Claude 回答的文本被称为“响应”,有时也被称为“输出”或“完成”。 2. 改变区域+混音: 选择的大小会影响结果。更大的选择为中途机器人提供更多上下文信息,能改善新添加内容的扩展和上下文,但选择太多可能导致新生成的元素混合或替换原始图像的部分。 提示应集中于您希望在所选区域中发生的事情,较短且聚焦的提示通常更有效,不应是对话式的。 分步进行,如果要更改图像的多个部分,一次只处理一个部分。 技术细节:使用 Vary+Remix 模式生成的作业遵循 chaos、fast、iw、no、stylize、relax、style、version、video、weird 等参数。 3. 提示的类型: 基本提示:可以是简单的单词、短语或表情符号。中途机器人最适合用简单、简短的句子来描述您想看到的内容,避免长长的请求列表。 高级提示:可以包括一个或多个图像 URL、多个文本短语以及一个或多个参数。图像 URL 始终出现在提示的前面,精心编写的提示有助于生成令人惊叹的图像。
2025-02-17
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
用AI写PPT,prompt用什么?
如果您想用 AI 写 PPT,以下是一些关于 prompt 的建议: 1. Prompt 的本质是用编程语言的结构加上自然语言的内容打造 AI 指令,让 AI 可以像理解程序一样理解人类的指令。比较友好易懂的是 Markdown 的结构化语言格式。例如,在写流程时,用“”代表层级,“”代表一级类目,“”代表子类目,这样能明确 prompt 的执行顺序。 2. 每个单独的提示词叫 tag(关键词)。支持的语言为英语(不用担心英语不好的问题,),emoji 也可以用。 3. 语法规则: 用英文半角符号逗号“,”来分隔 tag,逗号前后有空格或者换行不影响效果。 改变 tag 权重:tag 顺序越靠前对于 SD 来说权重越大,还可以通过“/…”(每加一层括号权重变化)来设置权重。 进行 tag 的步数控制(高级玩法):“”,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2;数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。 此外,像卓 sir 在制作电商模式相关的 PPT 时,通过与 GPT4 自然交流确定主题和企业代表,然后编写 PPT 大纲的 prompt,并经过多次迭代和优化。您可以参考这些经验和方法来构建适合您需求的 prompt。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架,提供下prompt样例
以下是几种适用于在飞书上构建企业每日利润表分析与汇报助手的 prompt 框架及样例: 1. ICIO 框架: 指令:明确执行的具体任务,如“分析企业每日利润表并生成详细报告”。 背景信息:提供执行任务的背景信息,如“企业近期业务拓展,成本有所增加”。 输入信息:大模型需要用到的一些信息,如“利润表的各项数据”。 输出信息:明确输出的具体信息的要求,如“报告以表格形式呈现,包含各项利润数据的同比和环比变化,并给出简要分析”。 2. BROKE 框架: 背景:说明背景,如“公司处于业务增长阶段,需要密切关注利润情况”。 角色:设定特定的角色,如“利润表分析专家”。 目标:明确任务的目标,如“准确分析每日利润表,为管理层提供决策支持”。 关键结果:明确可以衡量的结果,如“报告中的分析结论能帮助管理层制定有效的成本控制策略”。 调整:根据具体的情况,来调整具体的结果,如“根据市场变化调整利润分析的重点”。 3. CRISPIE 框架: 能力和角色:期望大模型扮演的角色洞察,如“专业的财务分析师”,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务,如“对每日利润表进行全面深入分析”。 个性:回应的风格、个性或者方式,如“以简洁明了、数据准确为特点”。 实验:提供多个回答的示例。 4. 情境框架: 情境:描述当前的情况,如“企业面临市场竞争,利润波动较大”。 任务:明确要完成的任务,如“分析每日利润表,找出利润波动的原因”。 行动:说明采取的行动,如“对各项收入和成本进行详细比对”。 结果:阐述期望得到的结果,如“生成包含原因分析和建议的报告”。
2025-02-14
如何了解AI的基本概念,是否有词条清单
以下是帮助您了解 AI 基本概念的一些途径和内容: 阅读相关资料:建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的主要分支和它们之间的联系。 浏览入门文章:这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 学习数学基础:包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 了解算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习(简介强化学习的基本概念)。 掌握评估和调优知识:如性能评估(包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。同时,AI 领域广泛,您可以根据自己的兴趣选择特定的模块(比如图像、音乐、视频等)进行深入学习。
2024-09-12
移动端自动化测试框架
很抱歉,目前知识库中没有关于移动端自动化测试框架的相关内容。但一般来说,常见的移动端自动化测试框架有 Appium、Espresso、XCUITest 等。Appium 支持多种移动平台和编程语言;Espresso 是 Android 平台的专用框架,具有高效和稳定的特点;XCUITest 则是用于 iOS 平台的测试框架。您可以根据您的具体需求和项目情况选择适合的框架。
2025-02-15
我想用ai自动化把我的文档内容生成漂亮的ppt
以下是一些可以将文档内容生成漂亮 PPT 的方法和工具: 1. 歌者 PPT(gezhe.com): 功能: 话题生成:一键生成 PPT 内容。 资料转换:支持多种文件格式转 PPT。 多语言支持:生成多语言 PPT。 模板和案例:海量模板和案例库。 在线编辑和分享:生成结果可自由编辑并在线分享。 增值服务:自定义模板、字体、动效等。 简介:是一款永久免费的智能 PPT 生成工具,能将任何主题或资料转化为 PPT,并提供便捷操作和智能化体验。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 完全免费,对学生和职场人士是福音。 智能化程度高,通过 AI 技术快速将资料转换成精美 PPT,高效准确。 模板和案例库丰富,适合各种场景。 对多语言支持实用,可一键生成目标语言的 PPT 或翻译。 几乎无需学习成本就能上手使用。 2. Process ON: 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 复制最终大纲的内容到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 Process ON 导入 Xmind 文件。 输入主题自动生成大纲和要求: 新增思维导图。 输入主题,点击 AI 帮我创作。 选择模版并生成 PPT: 点击下载,选择导入格式为 PPT 文件。 选择模版,再点击下载。 3. 增强版 Bot: 场景: 图片理解与生成:在对话框输入诉求,可生成相应图片,也可根据图片提取关键知识内容。 PPT 一键生成:根据上下文在对话框输入诉求,可生成幻灯片内容及相关模板选择。 PDF 智能制作:根据上下文在对话框输入诉求,可生成相应的可选模板。 系统架构论文一键创作。
2025-02-14
如何输入一个话题自动化生成小红书配文
以下是关于输入一个话题自动化生成小红书配文的方法: 首先,有一个名为“小红书文案专家”的工具。 它的功能价值在于:见过多个爆款文案,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可辅助创作者生成能一键复制发布的初稿,提供创意和内容,能节约 10 倍文字内容创作时间。其应用链接为:https://www.coze.cn/s/ij5C6LWd/ 。 设计思路方面: 痛点是个人时间有限,希望有人帮忙写初稿再进行二创,最好还能生成配图。 实现思路是给自己和团队小伙伴设计工作流,让 AI 按照运营日常工作思路和流程工作。 一期产品功能包括: 可以提取任何链接中的标题和内容。 按照小红书平台文案风格重新整理内容。 加入 emoji 表情包,使文案更有活力。 为文案配图片。 二期计划功能持续优化升级中,包括增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。
2025-02-14
有没有自动化文档处理的
以下是关于自动化文档处理的相关信息: 在使用 AI 进行数据分析时,可将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,以优化性能并便于发现和修正问题。对于复杂问题,律师可采用逐步深化和细化的提问方式。 为提高 AI 性能,需提供大量数据和示例,以及高质量的参考材料、操作指南、行业最佳实践、案例研究等,并编写详细的流程和知识。在自动化文档处理中,可编写详细指南说明如何处理不同类型文档及使用工具提高效率。 在 Prompt 中使用专业领域术语引导 AI 回答方向,如在法律领域处理合同纠纷时给出特定提示。 大模型的语料存在滞后性,使用 AI 回答后要进行交叉验证,结合自身专业知识筛选和判断,确保符合法律伦理、立法目的和实务。 此外,以下是一些 AI 文章排版工具: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档常用 Grammarly 和 PandaDoc 等。
2025-02-13
自动化测试怎么做
自动化测试的实施需要考虑以下几个方面: 1. 引入时机:适合在模块稳定后引入。当模块变化频繁时,测试代码可能成为累赘。 2. 工具引入建议:在进度不紧张时先尝试,成熟后再大规模应用。 3. 推荐策略:压缩范围,定义清晰的 MVP(最小可行产品),先完成一个 1 个月内可交付的版本,再用 1 个月进行优化迭代。 AI 生成测试用例的方法和工具包括: 1. 基于规则的测试生成: 测试用例生成工具,如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别,如 Clang Static Analyzer、Infer。 2. 基于机器学习的测试生成: 深度学习模型,如 DeepTest、DiffTest。 强化学习,如 RLTest、A3C。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成,如 Testim、Test.ai。 自动化测试脚本生成,如 Selenium IDE + NLP、Cucumber。 在 Python 中,与自动化测试相关的有 unittest 和 pytest 等框架支持自动化测试。
2025-02-08
文档自动化的技术方案: OCR+NLP pipeline指的是什么,个人具体怎么实施
OCR(Optical Character Recognition,光学字符识别)+NLP(Natural Language Processing,自然语言处理)pipeline 是一种将 OCR 技术和 NLP 技术相结合的文档自动化处理流程。 OCR 用于将文档中的图像或扫描的文字转换为可编辑的文本。 NLP 则对转换后的文本进行分析、理解和处理,例如提取关键信息、分类、情感分析等。 对于个人实施 OCR + NLP pipeline,大致可以按照以下步骤进行: 1. 选择合适的 OCR 工具和服务:有许多开源和商业的 OCR 工具可供选择,根据您的需求和技术能力进行评估和选用。 2. 准备数据:收集和整理需要处理的文档,并确保其质量适合 OCR 处理。 3. 进行 OCR 处理:使用选定的 OCR 工具对文档进行转换。 4. 选择 NLP 框架和模型:根据具体的任务和需求,选择适合的 NLP 框架和预训练模型。 5. 数据预处理:对 OCR 输出的文本进行清洗、预处理,以便 NLP 模型能够更好地处理。 6. 训练和优化 NLP 模型(如果需要):如果通用模型不能满足需求,可以使用标注数据进行训练和优化。 7. 集成和部署:将 OCR 和 NLP 部分集成在一起,并部署到实际应用环境中。 需要注意的是,实施过程中可能会遇到一些技术挑战,例如文档格式的复杂性、OCR 识别的准确性、NLP 模型的适应性等,需要不断调试和优化。
2025-02-08
生产爆款内容视频可以用哪些AI工具组合
以下是一些可用于生产爆款内容视频的 AI 工具组合及相关流程: 工具组合: 1. Pika、Pixverse、Runway、SVD:可用于生成各种类型视频的画面,如剧情片、科幻片、战争片、奇幻片等。 2. ChatGPT:用于生成视频脚本、筛选背景音乐等。 3. Stable Diffusion 或 Midjourney:生成角色和场景的视觉描述。 4. Adobe Firefly:将小说文本转换为语音,添加背景音乐和音效。 5. Clipfly 或 VEED.IO:进行视频编辑与合成。 制作流程: 1. 对于已有小说,使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 将提取的关键点和生成的图像组合成视频脚本。 5. 利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-08
什么样的模型或者工具组合可以实现一键抠图?
以下模型或工具组合可以实现一键抠图: 1. 在 Yeadon 提供的图像流搭建中,智能处理工具包括“智能抠图”,可以帮助快速完成抠图任务。在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能,其中智能处理工具中的“智能抠图”能够一键去除图片背景。 2. 在【SD】相关内容中,虽然主要介绍的是放大算法,但也提到了一些图像处理的相关内容。可以通过相关工具和设置来实现一键抠图的可能。 需要注意的是,具体的实现效果和操作可能因不同的场景和需求而有所差异。
2025-01-20
nova有个图生视频的功能,但是只能生成6秒钟,我要如何组合服务去实现可以文生长视频并且也可以图生长视频呢
以下是一些实现文生长视频和图生长视频的方法: 1. 使用 PixVerse V2 模型: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. 利用 runway: 视频的大部分片段用 runway(https://app.runwayml.com/)制作,少数的片段用的是即梦(https://jimeng.jianying.com/aitool/home)的动效画板和首尾帧。 以汽车内饰这一片段为例,登录 runway 账户后,在首页的左侧点击“Text/Imagine to Video”,中文即是“文生视频/图生视频”。点击 2 处将汽车内饰的图片上传到 runway 中。其中 1 处可以更改生成图片所用到的大模型版本,数字越大代表模型越强。目前只有 Gen2 每天有免费额度。3 处用于输入提示词。4 处可以修改生成的视频时长为 5s 或 10s,时长越长,生成的效果可能越不稳定。5 处可以看到生成的结果。提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”是,即摄像机围绕垂直轴顺时针旋转,常用于创造动态的、有时令人眩晕的视觉效果。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词该如何填写呢?可以参照:。runway 对于这些专有的运镜方式理解的很好。其他的提示词可以不填,先看看效果,如果效果不好,再补充简短的提示词重新生成视频。很多时候提示词过多,生成的视频就很怪异,像吃了毒蘑菇后看到的幻觉一样。改变提示词,改变生成时长,多抽卡几次,毕竟 runway 会员可以无限抽卡。 3. 海外产品 viva: viva 发布了首个开放给全部用户使用的 Sora 同架构视频生成模型,而且现阶段免费。支持文本生成视频、图片生成视频以及 4K 分辨率放大功能,另外也支持提示词的自动优化。文生视频单次可以生成一条 5 秒的视频,图生视频是 4 秒视频。
2024-12-19
AI能给数字组合排序吗
是的,AI可以对数字组合进行排序。排序是一项基本的计算机科学任务,可以通过多种算法实现。以下是几种常用的排序算法,以及如何利用AI和编程语言实现这些排序任务: 常见排序算法 1. 冒泡排序(Bubble Sort) 描述:比较相邻的元素,如果它们的顺序错误就交换,直到列表有序。 时间复杂度:O 2. 选择排序(Selection Sort) 描述:找到列表中最小的元素并将其放在已排序部分的末尾,重复该过程。 时间复杂度:O 3. 插入排序(Insertion Sort) 描述:逐步构建有序序列,对于未排序部分中的每个元素,将其插入到已排序部分的正确位置。 时间复杂度:O 4. 快速排序(Quick Sort) 描述:选择一个基准元素,将列表分成小于基准和大于基准的两部分,然后递归地对这两部分进行排序。 时间复杂度:O 5. 归并排序(Merge Sort) 描述:将列表分成两半,递归地排序这两半,然后合并排序后的两半。 时间复杂度:O 使用Python实现排序 可以使用Python中的排序函数`sorted`,也可以自己实现上述算法。以下是一些示例: 使用内置函数 ```python 使用sorted函数 numbers = sorted_numbers = sorted print 使用list.sort方法 numbers.sort print ``` 实现快速排序 ```python def quicksort: if len <= 1: return arr pivot = arr left = middle = right = return quicksort numbers = sorted_numbers = quicksort print ``` 使用AI排序 AI可以通过实现或优化排序算法,尤其是在处理大型数据集或特定排序需求时。深度学习和机器学习模型通常不会直接用于排序,但在某些复杂情况下,AI可以辅助排序任务,例如优化排序算法或处理带有特定特征的数据。 示例:TensorFlow排序 虽然深度学习框架如TensorFlow和PyTorch主要用于复杂的数据处理和模型训练,但也可以用于实现排序任务。以下是一个简单的TensorFlow排序示例: ```python import tensorflow as tf @tf.function def bubble_sort: n = tf.shape for i in tf.range: for j in tf.range: if arr: temp = arr arr arr = temp return arr numbers = tf.constant sorted_numbers = bubble_sort print ``` 以上是一些示例和方法,展示了如何使用AI和常规编程技术来对数字组合进行排序。选择合适的方法取决于具体的应用场景和需求。
2024-05-30