直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何了解AI的基本概念,是否有词条清单

回答

以下是帮助您了解 AI 基本概念的一些途径和内容:

  • 阅读相关资料:建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的主要分支和它们之间的联系。
  • 浏览入门文章:这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。
  • 学习数学基础:包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。
  • 了解算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习(简介强化学习的基本概念)。
  • 掌握评估和调优知识:如性能评估(包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。

您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。同时,AI 领域广泛,您可以根据自己的兴趣选择特定的模块(比如图像、音乐、视频等)进行深入学习。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

写给不会代码的你:20分钟上手 Python + AI

属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

写给不会代码的你:20分钟上手 Python + AI

继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础

其他人在问
AI选股
以下是为您提供的关于 AI 选股的相关信息: 1. 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:2024 年 3 月 13 日融资,融资金额 1.11 亿美元,轮次 A,主营 AI 药物发现和精准医疗。 Together AI:2024 年 3 月 13 日融资,融资金额 1.06 亿美元,轮次 A,估值 12 亿美元,主营 AI 基础设施和开源生成。 Glean:2024 年 2 月 27 日融资,融资金额 2.03 亿美元,轮次 D,估值 22 亿美元,主营 AI 驱动企业搜索。 Figure:2024 年 2 月 24 日融资,融资金额 6.75 亿美元,轮次 B,估值 27 亿美元,主营 AI 机器人。 Abridge:2024 年 2 月 23 日融资,融资金额 1.5 亿美元,轮次 C,估值 8.5 亿美元,主营 AI 医疗对话转录。 Recogni:2024 年 2 月 20 日融资,融资金额 1.02 亿美元,轮次 C,主营 AI 接口解决方案。 2. 2024 年 3 月科技变革与美股投资: AI 将引领新的服务模式,即“智能即服务”,重塑工作和生活,重新赋能芯片和云计算行业,创造新的投资机会,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。 企业竞争策略主要集中在迅速成长为大型模型公司并寻找强大背书,或保持小规模专注盈利并灵活应对市场变化。 2024 年将是大模型争霸的一年,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上受瞩目的公司。 3. 展望 2025,AI 行业的创新机会: 在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,为全球创作者和专业玩家设计创新的私有云产品,推出集成端侧 GPU 的旗舰产品——ZimaCube。 在 ToB 领域,AI 应用进入企业内部可从纵向的独立业务模块和横向的通用技能模块切入。2024 年 7 月,美国投资机构 A16z 发布文章探讨了人工智能在变革企业销售技术中的潜力,其中提到的多数产品符合上述特点。ToB 和 ToP 存在一定交集。
2024-12-21
openai 12天都有哪些内容
以下是 OpenAI 12 天相关的内容: 12 月 18 日: API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。 12 月 12 日: 苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作。 多平台无缝衔接:支持 iPhone、iPad 和 Mac,涵盖 Siri 集成、写作工具增强、视觉智能分析等多种应用场景。 实用场景:圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。 12 月 5 日: OpenAI 近日宣布将举行为期 12 天的活动,期间每天直播展示新功能或工具。 DeepMind 发布了基础世界模型 Genie 2,可以通过一张图片生成可操作的 3D 环境,实现智能体的实时交互与行为预测。 真格基金投资副总裁 Monica 在其播客「OnBoard!」发布的最新一期对谈中,与在一线大模型机构有实际训练大语言模型(LLM)经验的研究员针对 OpenAI o1 模型进行了三个多小时的拆解与解读。强化学习如何给大语言模型带来新的逻辑推理能力?这种能力的来源、实现方式和未来潜力又是怎样的?o1 带来的「新范式」会对行业有怎样的影响?
2024-12-20
有没有能根据哼唱,出伴奏的AI
以下是一些能根据哼唱出伴奏的 AI 相关信息: 在音乐创作中,如果只有词和一小段自己哼唱的旋律,可以上传这段哼唱的旋律,让 AI 扩展出自己喜欢的风格,然后将这段音轨作为动机音轨继续创作。 对于已有简单录音小样,可以利用 REMIX 优化音质与编曲结构,并利用 AI 尝试不同曲风版本,找到最喜欢的风格,然后制作成核心音轨,进而完成全曲创作。 同时,在使用 AI 进行音乐相关处理时也存在一些问题和需要注意的地方: 检查乐谱时,主旋律基本能还原,但可能会把噪声识别成音符形成错误信息,需要具备乐理知识去修复。 重奏输出方面,修谱和重奏软件可以使用 中的 Muse Score,它支持多种常用音频编辑格式的导出和高清输出。 目前存在一些待解决的问题,如延长音部分可能会抢节奏,爵士乐中的临时升降号可能导致判断混乱,高音和低音的符点会相互影响,基础修谱可能导致旋律单调等。 在将 Midi 导出到 MP3 虚拟演奏文件时,可以直接导总谱或分轨导出,后期若想输出到某些音乐平台可能需要转码。还可以使用相关软件修改音色进行渲染。把文件丢给 AI 做二次创作时,可以根据具体情况选择完整小节或在中间掐断。
2024-12-20
2025年AI的大走向是什么
2025 年 AI 的大走向可能包括以下几个方面: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域的应用,并围绕模型效率和运行成本进行优化,为广泛普及和商业化奠定基础。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,使系统能够理解和模拟三维环境,并融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升对环境的感知与推理能力以及执行任务的实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合文本、图像、音频、视频、3D 等多模态数据,生成式 AI 将显著提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。 4. 数字营销方面:AI 技术将成为数字营销的核心,品牌应注重利用 AI 提升用户体验,预计全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高 35%,广告成本减少 20%。 5. 行业发展:2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,同时成为 AI 产业链“资产负债表”逐步修复的年份,标志着行业从高投入、低产出向商业化路径优化迈出重要一步。 6. 竞争格局:大语言模型供应商将各具特色,竞争加剧;AI 搜索引擎将成为杀手级应用,快速普及,颠覆传统搜索方式;不同领域的 AI 搜索引擎将出现,针对专业需求提供更精准的信息服务。
2024-12-20
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
AI的工具类应用有哪些?
以下是一些常见的 AI 工具类应用: 1. AI 菜谱口味调整工具:如“下厨房”的口味调整功能,使用自然语言处理和数据分析技术,根据用户反馈调整菜谱口味,市场规模达数亿美元。 2. AI 语言学习纠错平台:像“英语流利说”的纠错功能,运用自然语言处理和机器学习技术,帮助语言学习者纠正错误,市场规模达数十亿美元。 3. AI 电影剧情分析系统:例如“豆瓣电影”的剧情分析工具,通过数据分析和自然语言处理技术,为用户提供深度解读,市场规模达数亿美元。 4. AI 办公文件分类系统:如“腾讯文档”的分类功能,借助数据分析和机器学习技术,自动分类办公文件,方便管理,市场规模达数亿美元。 5. AI 美容护肤方案定制平台:“美丽修行”的定制方案功能,利用图像识别和数据分析技术,根据用户肤质定制护肤方案,市场规模达数亿美元。 6. AI 菜谱生成平台:“豆果美食 APP”,采用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱,市场规模达数亿美元。 7. AI 语言学习助手:“沪江开心词场”,通过自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案,市场规模达数十亿美元。 8. AI 电影推荐系统:“爱奇艺”的智能推荐功能,运用数据分析和机器学习技术,根据用户喜好推荐电影,市场规模达数亿美元。 9. AI 办公自动化工具:“WPS Office”,借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程,市场规模达数十亿美元。 10. AI 游戏道具推荐系统:在一些游戏中的推荐功能,使用数据分析和机器学习技术,根据玩家需求推荐游戏道具,市场规模达数亿美元。 11. AI 天气预报分时服务:“彩云天气”的分时预报,利用数据分析和机器学习技术,提供精准的分时天气预报,市场规模达数亿美元。 12. AI 医疗病历分析平台:“医渡云”的病历分析系统,通过数据分析和自然语言处理技术,分析医疗病历,辅助诊断,市场规模达数十亿美元。 13. AI 会议发言总结工具:“讯飞听见”的会议总结功能,运用自然语言处理和机器学习技术,自动总结会议发言内容,市场规模达数亿美元。 14. AI 书法作品临摹辅助工具:书法临摹软件,借助图像识别和数据分析技术,帮助书法爱好者进行临摹,市场规模达数亿美元。
2024-12-20
常用的prompt的自动化词条组合有哪些?
以下是一些常用的 prompt 自动化词条组合: 1. 情境:这是一个基础的提示词框架,可作为入手选择。 2. 对于 Dynamic Prompts 插件,魔法提示词能自动生成补充,如勾选魔法提示词并设置相关参数,包括创意度、模型选择等。以 MagicPrompt 模型为例,能根据输入的关键词生成丰富的补充内容。 3. 在 Prompt 的基础篇中,每个单独的提示词叫 tag(关键词),支持英语及 emoji 。语法规则包括用英文半角逗号分隔 tag ,改变 tag 权重有两种写法,还能进行 tag 的步数控制。 如果您觉得这些例子过于复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版微信群运营文案、安排减脂餐、列学习计划、设计商务会议调研问卷等,来思考能帮助简单自动化的场景。
2024-10-18
了解 AI 视频制作的基本概念和常见工具
AI 视频制作的基本概念: 将小说或其他创意内容通过一系列步骤转化为视频,通常包括文本分析、角色与场景生成、视频编辑与合成等环节。 常见工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作 AI 短片的故事来源和剧本写作: 1. 故事来源: 原创(直接经验):自身或周围人的经历、做过的梦、想象的故事等。 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 2. 剧本写作: 编剧是有一定门槛的手艺,不能单纯套剧作理论和模板,要多写多实践,再结合看书总结经验。 对于短片创作,可从自身或朋友的经历改编入手,或者对触动自己的短篇故事进行改编。 多与他人讨论故事,有助于修改和进步。 AI 春晚的制作分工: 1. 制片人AJ:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 2. 图像创意??:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 3. 视频制作??:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 4. 编剧?:负责撰写剧本,包括故事情节、角色串联、人物台词等。 5. 配音和配乐?:涉及背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 6. 剪辑师?:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 AI 春晚团队高效协作的方法: AI 的创造速度快,每个分工职责中有擅长的共创同学,人员分工明确,形成了高效的 SOP,从而可以快速产出。
2024-10-21
0基础中老年学习者必须知道的AI基本概念和知识 是哪几个
对于 0 基础的中老年学习者,以下是必须知道的 AI 基本概念和知识: 一、Python 基础 1. 基本语法:包括变量命名、缩进等规则。 2. 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 3. 控制流:条件语句(if)、循环语句(for 和 while)控制程序执行流程。 4. 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 5. 模块和包:导入模块,使用包来扩展程序功能。 6. 面向对象编程(OOP):类和对象的定义与实例化,属性和方法的定义与调用。 二、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及相互关系。 2. 历史发展:回顾 AI 的发展历程和重要里程碑。 三、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 四、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解其基本概念。 五、评估和调优 1. 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。 2. 模型调优:学习使用网格搜索等技术优化模型参数。 六、文件操作 1. 文件读写:学习打开文件、读取文件内容和写入文件。 2. 文件与路径操作:理解如何处理文件路径,列举目录下的文件。 七、异常处理 1. 理解异常:了解什么是异常以及在 Python 中的工作方式。 2. 异常处理:学会使用 try 和 except 语句处理程序错误。
2024-09-13
AIGC伦理检查清单
以下是一份关于 AIGC 伦理检查清单的相关内容: AIGC 概述: GenAI(生成式 AI)是能够从已有数据中学习并生成新数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(AIGenerated Content)。 我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成共同监管形势。 AIGC 的分类及应用: 主要分为语言文本生成、图像生成和音视频生成。 语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。 音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 触发的法律与道德风险: 重伦理道德,主要体现在两方面: 国家安全:不得生成煽动颠覆国家政权、推翻社会主义制度,危害国家安全和利益、损害国家形象,煽动分裂国家、破坏国家统一和社会稳定,宣扬恐怖主义、极端主义。 伦理道德:不得宣扬民族仇恨、民族歧视,暴力、淫秽色情,以及虚假有害信息等法律、行政法规禁止的内容。 GenAI 工具和 AIGC 提供者应注意在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生民族、信仰、国别、地域、性别、年龄、职业、健康等歧视。
2024-11-21
最近有什么类似任务清单的AI应用
以下是一些类似任务清单的 AI 应用: WPS 文档翻译功能:这是一个 AI 办公文档翻译工具,使用自然语言处理技术,市场规模达数亿美元。它能快速翻译办公文档,提高工作效率,例如可快速翻译 Word、Excel、PPT 等文档。 美丽修行 APP:作为 AI 美容护肤产品推荐平台,运用数据分析和自然语言处理技术,市场规模达数亿美元。它能根据用户肤质推荐适合的美容护肤产品,比如为油性皮肤推荐控油、保湿的护肤品。 360 儿童手表:这是一个 AI 儿童安全监控系统,采用图像识别和机器学习技术,市场规模达数亿美元。它能保障儿童安全,让家长放心,比如当孩子走出安全区域时会自动向家长发送警报。 汽车之家 APP:作为 AI 汽车保养提醒系统,运用数据分析和机器学习技术,市场规模达数亿美元。它能提醒车主及时进行汽车保养,例如当汽车行驶到一定里程时会推送保养提醒信息。 平安好医生 APP:这是一个 AI 医疗诊断辅助系统,使用数据分析和机器学习技术,市场规模达数十亿美元。它能辅助医生进行疾病诊断,提高诊断准确性,比如用户上传症状描述和检查报告后,系统能给出初步诊断建议和治疗方案。 腾讯会议:作为 AI 会议记录生成工具,运用语音识别和自然语言处理技术,市场规模达数亿美元。它能自动生成会议记录,方便回顾和整理,比如在会议过程中能生成包括发言内容、讨论要点等的记录。 字体管家 APP:这是一个 AI 书法字体生成器,采用图像生成和机器学习技术,市场规模达数亿美元。它能生成各种风格的书法字体,比如生成楷书、行书、草书等字体。 醒图 APP:作为 AI 摄影构图建议工具,运用图像识别和数据分析技术,市场规模达数亿美元。它能为摄影爱好者提供构图建议,提升照片质量,比如引导用户将主体放在画面的黄金分割点上。 宝宝树安全座椅推荐:这是一个 AI 儿童安全座椅推荐系统,运用数据分析和机器学习技术,市场规模达数亿美元。它能为家长推荐合适的儿童安全座椅,比如根据儿童年龄、体重等信息进行推荐。 途虎养车保养推荐:作为 AI 汽车保养套餐推荐系统,运用数据分析和机器学习技术,市场规模达数十亿美元。它能根据车辆情况推荐保养套餐,比如分析车辆型号、行驶里程等。 丰巢快递柜管理系统:这是一个 AI 物流快递柜管理系统,采用数据分析和物联网技术,市场规模达数十亿美元。它能优化快递柜使用效率,比如分配柜子、通知取件等。 智联招聘面试模拟功能:作为 AI 招聘面试模拟平台,运用自然语言处理和机器学习技术,市场规模达数亿美元。它能帮助求职者进行面试模拟,比如模拟面试官提问并提供反馈。 酷家乐装修设计软件:这是一个 AI 房地产装修设计平台,运用图像生成和机器学习技术,市场规模达数十亿美元。它能为用户提供装修设计方案,比如生成各种装修设计方案供用户选择和调整。
2024-11-19
在办公场景中的AI工具清单
以下是在办公场景中常见的 AI 工具清单: PPT 制作工具: Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。链接:https://gamma.app/ 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。链接:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。链接:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。链接:https://zhiwen.xfyun.cn/ 商业顾问工具: Sameday:可以接电话并预约。链接:https://www.gosameday.com/ Truelark:可以处理短信、电子邮件和聊天。链接:https://truelark.com/ Osome:可以管理后台办公室。链接:https://osome.com/sg/ Durable:可以创建一个完整的专业网站。链接:https://durable.co/ Harvey 和 Spellbook:帮助法律团队自动化任务,如接待、研究和文件起草。 Interior AI:使代理商能够虚拟布置房产。链接:https://interiorai.com/ Zuma:帮助物业经理将潜在客户转化为预定的参观。链接:https://www.getzuma.com/ 通用内容创建工具:Jasper(https://www.jasper.ai/)、Copy(http://copy.ai/)、Writer(http://writer.ai/) 其他类型工具: 辅助创作与学习:AI 智能写作助手、AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。
2024-10-30
入门大模型的简要学习书籍清单
以下是为您推荐的入门大模型的简要学习书籍清单: 1. 《大模型入门指南》: 通俗解释了大模型,即通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 用上学参加工作类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 介绍了 Token 作为模型处理和生成的文本单位,以及其在数字化和形成词汇表中的作用。 2. 《从 0 到 1 了解大模型安全,看这篇就够了》: 介绍了不同类型的模型架构,如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 更擅长自然语言生成任务。 指出目前大型语言模型多为只使用 Decoder 的 Decoderonly 架构,其预训练数据量大,参数多。 提到了大模型在安全性方面的差别。 3. 《走入 AI 的世界》: 以 GPT3 为例,说明了预训练阶段大模型学习的内容和数量,如使用了 4990 亿 token 的数据集,相当于 86 万本《西游记》。 介绍了 Transformer 模型,这是一种处理文本内容的经典架构,不清楚其具体细节不影响使用大模型,感兴趣可通过相关链接深入了解。
2024-10-28
入门大模型的简要学习清单
以下是一份大模型入门的简要学习清单: 1. 理解大模型的底层原理: 了解预训练阶段大模型的学习内容和数据量,例如以 GPT3 为例,其训练使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。 熟悉 Transformer 模型架构,这是处理文本内容的经典架构,虽然具体细节不清楚不影响使用大模型,但感兴趣可通过相关链接深入了解。 2. 掌握大模型的概念: 通俗地说,大模型通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 3. 类比学习大模型的训练和使用过程: 找学校:训练大模型需要大量计算,GPU 更合适,只有有资本购买大量 GPU 的才有能力训练自己的大模型。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:选择合适的算法让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称为推导(infer)。 4. 了解 Token: Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词等,在将输入进行分词时会对其数字化,形成词汇表。
2024-10-28