Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架,提供下prompt样例

Answer

以下是几种适用于在飞书上构建企业每日利润表分析与汇报助手的 prompt 框架及样例:

  1. ICIO 框架:
    • 指令:明确执行的具体任务,如“分析企业每日利润表并生成详细报告”。
    • 背景信息:提供执行任务的背景信息,如“企业近期业务拓展,成本有所增加”。
    • 输入信息:大模型需要用到的一些信息,如“利润表的各项数据”。
    • 输出信息:明确输出的具体信息的要求,如“报告以表格形式呈现,包含各项利润数据的同比和环比变化,并给出简要分析”。
  2. BROKE 框架:
    • 背景:说明背景,如“公司处于业务增长阶段,需要密切关注利润情况”。
    • 角色:设定特定的角色,如“利润表分析专家”。
    • 目标:明确任务的目标,如“准确分析每日利润表,为管理层提供决策支持”。
    • 关键结果:明确可以衡量的结果,如“报告中的分析结论能帮助管理层制定有效的成本控制策略”。
    • 调整:根据具体的情况,来调整具体的结果,如“根据市场变化调整利润分析的重点”。
  3. CRISPIE 框架:
    • 能力和角色:期望大模型扮演的角色洞察,如“专业的财务分析师”,提供幕后洞察力、背景信息和上下文。
    • 声明:简洁明了的说明希望完成的任务,如“对每日利润表进行全面深入分析”。
    • 个性:回应的风格、个性或者方式,如“以简洁明了、数据准确为特点”。
    • 实验:提供多个回答的示例。
  4. 情境(Situation):任务(Task):行动(Action):结果(Result)框架:
    • 情境:描述当前的情况,如“企业面临市场竞争,利润波动较大”。
    • 任务:明确要完成的任务,如“分析每日利润表,找出利润波动的原因”。
    • 行动:说明采取的行动,如“对各项收入和成本进行详细比对”。
    • 结果:阐述期望得到的结果,如“生成包含原因分析和建议的报告”。
Content generated by AI large model, please carefully verify (powered by aily)

References

从原理到应用一次讲清楚 Prompt

1 ICIO框架*指令执行的具体任务*背景信息:提供执行任务的背景信息,上下文内容,让大模型更好的回答*输入信息:大模型需要用到的一些信息*输出信息:明确输出的具体信息的要求,比如字数,比如风格比如格式2 BROKE框架通过GPT的设计提示,来提升整体反馈的效率。2、背景提供足够背景信息,让大模型可以理解问题的上下文*角色设定特定的角色,让GPT根据特定的角色能力的特点来形成响应*目标明确任务的目标,让大模型知道你想让他做什么*结果定义明确可以衡量的结果,让大模型清楚自己做的情况*调整根据具体的情况,来调整具体的结果3 CRISPIE框架*能力和角色你期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文*声明,简洁明了的说明希望完成的任务*个性,回应的风格、个性或者方式*实验:提供多个回答的示例

Prompt 提示词没那么玄乎也就是个沟通方式-大雨整理

|框架|说明|示例||-|-|-||Background:背景|说明背景,为ChatGPT提供充足信息|公司由于国际化战略,需要员工提升职场英语水平。||Role:角色|我希望ChatGPT扮演的角色|ChatGPT扮演职场英语导师,支持员工的学习。||Objectives:目标|我们希望实现什么|提升团队的英语交流能力,促进国际业务的成功。||Key Result:关键结果|我要什么具体效果试验并调整|提高员工的职场英语水平,通过实际业务表现评估。||Evolve:试验并改进|“三种改进方法自由组合|a.提供针对性的语法培训,b.针对实际沟通场景改进学习材料,c.鼓励员工定期进行语言交流。”|[heading3]完整示例[content]PromptClaudeChatGPT3.5结果[heading3]我的理解[content]目前重点使用的框架,比较习惯这种具有全局,整体思维的框架。他出了一本书,很值得拿来读一读,对Prompt的来龙去脉能有整体性的理解和认识。相对来说,这个框架给我们指明了一个方向,行业知识的Know How,具体的业务知识是很重要的。职场商务英语培训,显然不是为了泛泛提升个人能力,而是马上创造价值,给公司带来利润的方向去做的。显然,公司不会为了某个人因为今天的培训,10年以后展示出啥能力来而培训。这个框架非常好的地方在于,很明确让我们知道领域知识的重要性,我们提问的各个方面恰恰体现了我们业务水平的高低。但是,话反过来说,为了更好达成目标,写这个框架本身也是可以借助ChatGPT的,也就是说为了生成背景知识,我们可以预先给GPT一部分内容信息,然后继续。

小七姐:Prompt 喂饭级系列教程 小白学习指南(二)

栗子2、比如你发现每次让AI帮你阅读文档的时候,除了甩链接你总要说点什么让它生成的答案更靠谱。你就可以简单写一个Prompt:于是这个提示词解决了你自己,和任何收到你Prompt的人微调几个关键信息就能自动让GPT或者Kimi帮你阅读一篇论文而且生成不错的总结啦!如果你觉得这些例子对你来说还是过于复杂了,请你结合你自己的生活或者工作场景来想一个能帮你简单自动化的场景:自动给班级里的每个孩子起个昵称?自动排版你微信群经常发的一些运营小文案?自动帮你安排周一到周日的减脂餐?帮你列一个清晰的学习计划,day1-day7?帮你的下一次商务会议设计一个调研问卷?……第三步、选一个好上手的提示词框架来帮你开启你第一次有效的编写如果你这时候问什么是提示词框架,那说明你第一课没认真学,回去复习吧。对框架的理解和运用是非常重要的一部分,参考上图,来源:[prompt-engineering/prompt-patterns:Prompt编写模式:如何将思维框架赋予机器,以设计模式的形式来思考prompt(](https://github.com/prompt-engineering/prompt-patterns)[github.com](http://github.com)[)](https://github.com/prompt-engineering/prompt-patterns)提示词框架有很多,有的简单有的复杂,你可以选一个看起来不那么难的先入手,比如可以从非常基础的:情境(Situation):任务(Task):行动(Action):结果(Result):开始。

Others are asking
口播文案 Prompt
以下是关于口播文案 Prompt 的相关内容: 一、景淮:漫画趣味高中大学时期对比图 GPTs 实战 在这个示例中,先将相关示例喂给 GPT,观察其生成文案的效果。提示词为上述高中和大学区别的口播搞笑视频,重点突出不同时期的生活状态和鲜明反差。输入关键词“下雨了”后,生成了以下口播文案: 1. 高中:下雨了,天哪,怎么办,我的数学书会湿!大学:下雨了,哦,正好,再睡一会儿。 2. 高中:下雨了,得快跑,别迟到了!大学:下雨了,那今天就不去了,网课见。 3. 高中:下雨了,我的鞋子!得小心踩!大学:下雨了,穿拖鞋去了,方便。 4. 高中:下雨了,雨衣雨伞全副武装!大学:下雨了,抓个文件夹顶顶就行。 5. 高中:下雨了,课间不能出去玩了。大学:下雨了,正好和室友打个牌。 6. 高中:下雨了,哦不,体育课怎么办?大学:下雨了,哈,今天体育课取消了! 7. 高中:下雨了,我的作业别淋湿了!大学:下雨了,电脑在宿舍,作业得推迟了。 8. 高中:下雨了,赶紧找地方躲雨。大学:下雨了,雨中漫步也挺浪漫的。 9. 高中:下雨了,不会影响放学吧?大学:下雨了,嘿,这是不是个不去自习的理由? 10. 高中:下雨了,我的头发!大学:下雨了,谁还没个糟糕的头发日呢。 二、歌词提示词 1. 柔和的原声乐器引子:指在歌曲开头使用柔和的原声乐器(如原声吉他或钢琴)演奏的部分。作用是设置温暖、亲密的氛围,引导听众进入歌曲。适用于民谣、流行音乐、乡村音乐等风格,编曲技巧是使用原声吉他或钢琴演奏柔和的旋律或和声,创造出温暖和亲密的开场效果。 2. 富有灵魂感的:充满情感和灵魂的表现,通常具有深情的旋律和强烈的情感表达。作用是增强音乐的情感深度和感染力,适用于灵魂乐、R&B、流行音乐等风格,编曲技巧是使用深情的旋律、柔和的和声和强烈的情感表达。 3. 富有灵魂感的桥段:在歌曲中间部分或过渡部分,充满情感和灵魂的旋律或和声。作用是增强音乐的情感深度和结构变化,适用于灵魂乐、R&B、流行音乐等风格,编曲技巧是在歌曲的过渡部分设计一个深情且富有灵魂感的桥段。 4. 口语:在歌曲或音乐中使用普通说话的方式进行表演,而不是唱歌。作用是增加音乐的叙述性和亲密感,强调歌词的内容和表达,适用于说唱、独立音乐、实验音乐等风格,编曲技巧是在适当的段落使用口语表演。 三、Prompt 的专场教程 基础篇 1. Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则: 用英文半角符号逗号,来分隔 tag,逗号前后有空格或者换行都不影响效果。 改变 tag 权重:tag 顺序越靠前对于 SD 来说权重越大,可通过“括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍)两种方式设置。 进行 tag 的步数控制(高级玩法):“”,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2,数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。
2025-02-18
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
prompt的应用
以下是关于 prompt 应用的全面介绍: 一、什么是 prompt 1. 提示是您给模型(如 Claude)的文本,用于引发相关输出。它通常以问题或指示的形式出现。例如:“为什么天空是蓝色的?” 2. 在 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令。类似给 AI 的提示,包含主体、运动、风格等信息,用户借此控制和指导生成内容。它在 AI 视频生成中作用十分重要,是表达需求的方式,影响视频内容和质量。如果上述过于抽象,您可以理解 Prompt 为:将您输入的文字变成对应的画面和运动形式。 3. 简单来说,prompt 是一套您和大模型交互的语言模板。通过这个模板,您可以输出对于大模型响应的指令,用于指定大模型应该具体做什么、完成什么任务、如何处理具体的任务,并最终输出您期望的结果。大模型的本质是一个基于语言的概率模型,若直接问大模型而不提供 prompt,相当于大模型随机给出答案。有了 prompt,相当于给了一个模板,包括对于模型的要求、输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。 二、prompt 在不同场景的应用 在即梦 AI 视频生成中,要想获得最佳的视频质量,需要写好 prompt。在图片生视频和文本生视频中,都有 prompt 的输入位置。
2025-02-18
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 4. 课件中的 Prompt 之术“三板斧”: 分配角色。 给出示例(fewshots)。 思维链(ChainofThought)。
2025-02-17
prompt
以下是关于 prompt 的相关知识: 1. 提示简介: 提示是您给 Claude 的文本,用于引发相关输出,通常以问题或指示的形式出现。例如,“User:Why is the sky blue? 为什么天空是蓝色的?”,Claude 回答的文本被称为“响应”,有时也被称为“输出”或“完成”。 2. 改变区域+混音: 选择的大小会影响结果。更大的选择为中途机器人提供更多上下文信息,能改善新添加内容的扩展和上下文,但选择太多可能导致新生成的元素混合或替换原始图像的部分。 提示应集中于您希望在所选区域中发生的事情,较短且聚焦的提示通常更有效,不应是对话式的。 分步进行,如果要更改图像的多个部分,一次只处理一个部分。 技术细节:使用 Vary+Remix 模式生成的作业遵循 chaos、fast、iw、no、stylize、relax、style、version、video、weird 等参数。 3. 提示的类型: 基本提示:可以是简单的单词、短语或表情符号。中途机器人最适合用简单、简短的句子来描述您想看到的内容,避免长长的请求列表。 高级提示:可以包括一个或多个图像 URL、多个文本短语以及一个或多个参数。图像 URL 始终出现在提示的前面,精心编写的提示有助于生成令人惊叹的图像。
2025-02-17
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
coze 有什么好的样例么?
以下是关于 coze 的一些好的样例: 1. CT:coze 应用实例“最美证件照” 新创建一个应用:新建项目时新增创建应用选项,分为业务逻辑设计页面和用户界面两个卡片选项。 增加业务逻辑:与之前版本类似,添加工作流、插件、数据等工具和知识库类调用,编辑完工作流有更多发布选项,如发布为 API、扣子商店、模版等,并发布了自己的令牌。 增加用户界面:相当于以前的 bot 总调试页面,增加了很多 UI 组件,使用拖拽方式交互。 入参配置:需按特定格式填写入参。 出参这里:绑定输出的图片链接 output。 产品效果:优化排版和过场动画,将排版搞好看,设置过场的 gif 动画,调用工作流时按钮处于禁用状态。 2. 一泽 Eze:样例驱动的渐进式引导法——利用 AI 高效设计提示词,生成预期内容 渐进式引导法的实战分享 评估样例,尝试提炼模板 与 AI 开始对话:借助擅长扮演专家角色的 AI 改进初始的正向样例,如使用 Claude 3.5 进行对话,输入初始指令并获取回复,通过回复侧面印证 AI 对样例的理解与建议。 提炼初始模板:当确保 AI 基本理解样例与需求目标时,进入提炼初始模板步骤。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 1~3 个用例让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续调整。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
AI+理财咨询,有什么实际应用的案例吗?包含个家庭做资产负债表,利润表,现金流表,家庭风险分析
以下是一些 AI 在理财咨询方面的实际应用案例: 在金融/保险领域,AI 可充当个人金融理财顾问,为用户提供理财建议。 能够进行贷款信息摘要及初始批复。 具备识别并检测欺诈活动风险的能力。 可以对客服中心进行分析及内容洞察。 处理及分析保险理赔。 分析投资者报。 例如,有产品使用 GPT 解决性能差和历史数据存档的问题,最终的 SQL 执行时间从 4200 秒缩短到 8 秒,效率提升了 520 倍,复杂度降低了 6 倍,同时还能保存所有的历史数据,报表可以秒开。
2024-10-02
我是否可以在飞书上传我的相关文档,然后把这些文档作为知识库进行对话,若可以,如何操作
在飞书上可以上传您的相关文档并将其作为知识库进行对话。具体操作如下: 1. 您需要一个额外的软件:AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 2. 在 AnythingLLM 中,有一个 Workspace 的概念,您可以创建自己独有的 Workspace 与其他项目数据进行隔离。操作步骤为: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和您上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话。 3. 另外,您还可以参考以下操作在飞书上创建知识库并上传文本内容: 登录 。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入知识库页面,并单击创建知识库。在弹出的页面配置知识库名称、描述,并单击确认(一个团队内的知识库名称不可重复,必须是唯一的)。 在单元页面,单击新增单元。 在弹出的页面选择要上传的数据格式(默认是文本格式),然后选择一种文本内容上传方式完成内容上传。上传方式如下: 本地文档: 在文本格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。分段标识符:选择符合实际所需的标识符。分段最大长度:设置每个片段内的字符数上限。文本预处理规则:替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址。单击下一步完成内容上传和分片。
2025-01-07
我想在小红书上写文案,应该用什么AI工具
以下是一些可用于在小红书上写文案的 AI 工具: 1. 小红书文案专家:见过多个爆款文案,只需输入网页或视频链接,就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约文字内容创作时间。应用链接:https://www.coze.cn/s/ij5C6LWd/ 2. Pailido|AI 拍立得:这是一款文案快速生成的 AINaitive 产品,各个场景由 AI Agent 驱动,仅需选中场景后点击拍摄即可快速生成对应文案。其服务端可使用类似 Dify.AI、Coze 等在线编辑好一个 Agent 应用,然后通过 API 方式集成。能搞定小红书文案、外卖点评写作、闲鱼商品发布文案等。 3. GPT4、WPS AI 和 chatPPT:可帮助完成 PPT 相关的创作,包括大纲内容、排版、动画等。
2024-08-17
如果运用AI将文本自动生成适合发布在小红书上的图文笔记
以下是利用 AI 将文本自动生成适合发布在小红书上的图文笔记的方法: 首先介绍一个名为“小红书文案专家”的 BOT 。它的功能价值在于,见过多个爆款文案的样子,您只需输入一个网页链接或视频链接,就能为您生成对应的小红书文案。它可以辅助创作者生成能够一键复制发布的初稿,为您提供创意和内容,能节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ Bot 封面:
2024-08-14
如果运用AI将文本自动生成适合发布在小红书上的图文笔记,金融保险科普类
目前没有关于运用 AI 将金融保险科普类文本自动生成适合发布在小红书上的图文笔记的相关内容。但一般来说,您可以利用一些 AI 写作工具,输入金融保险科普的关键信息和要点,让 AI 生成初步的文本内容。然后根据小红书的风格特点,对生成的文本进行优化,比如使用生动、亲切的语言,增加表情符号、热门话题标签等。在生成图片方面,可以借助一些 AI 绘画工具,输入与金融保险相关的描述,生成具有吸引力的图片。不过需要注意的是,AI 生成的内容可能需要您进行进一步的审核和修改,以确保准确性和合规性。
2024-08-14
飞书上怎么找到waytoagi
飞书上可以通过以下两种方法找到 WayToAGI: 1. 在 WaytoAGI.com 网站点击右上角的直达飞书知识库。 2. 直接访问:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e ,建议收藏到浏览器收藏夹中。
2024-06-04