Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么样的模型或者工具组合可以实现一键抠图?

Answer

以下模型或工具组合可以实现一键抠图:

  1. 在 Yeadon 提供的图像流搭建中,智能处理工具包括“智能抠图”,可以帮助快速完成抠图任务。在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能,其中智能处理工具中的“智能抠图”能够一键去除图片背景。
  2. 在【SD】相关内容中,虽然主要介绍的是放大算法,但也提到了一些图像处理的相关内容。可以通过相关工具和设置来实现一键抠图的可能。

需要注意的是,具体的实现效果和操作可能因不同的场景和需求而有所差异。

Content generated by AI large model, please carefully verify (powered by aily)

References

Yeadon:写给小小白的-从游戏入手学习搓图像流bot

由于文本类型大语言模型无法直接生成图片,但是我们设计的智能体需要有对应的功能,因此我们要通过【技能】部分的图像流,为文本大模型提供图像生成能力。比如我们的marvin机器人需要有个生成海报的能力,所以我们需要为bot加入图像流,按照下面步骤创建图像流并设定图像流名称以及描述(注意名称只能是英文)[heading3]步骤二:了解图像流节点的意义[content]在图像流编辑界面,左侧的工具栏集合了所有你可能用到的功能。这些工具大致可以分成几类,让我们先了解最常用的部分。智能处理工具包括"智能生成"、"智能抠图"和"画质提升"等,它们可以帮你快速完成一些复杂的图片处理任务。比如你想要去除图片背景,用智能抠图就能一键完成。基础编辑工具则是我们最常用到的。画板、裁剪、调整、添加文字这些功能可以满足日常图片编辑需求。像调整图片大小、裁切形状、加个文字说明这些都可以轻松搞定。如果你想让图片更有创意,可以试试风格处理类的工具。风格迁移能让照片秒变艺术画,背景替换能帮你换个好看的背景,这些都是让图片与众不同的好帮手。别被这么多工具吓到,你不需要一次就掌握所有功能。建议从基础编辑工具开始尝试,熟悉了再去探索其他有趣的功能。每个工具点开就能看到详细设置,同时你可以尝试动手操作看看效果。右侧看起来像一个画布,拖拽左侧的工具或点击+在可以在这里拖放各种工具模块,工具之间可以连接,形成工作流程[heading3]步骤三:根据需求进行图像流设计[content]1.生成海报功能在总结故事后,将完整的故事作为输入2.输入的故事进行一轮提示词优化从自然语言转变为更符合文生图大模型的提示词3.将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报[heading3]步骤四:测试图像流

【SD】图片高清化+面部修复+一键抠图,一些你不知道的事儿

首先是关于放大算法,如果大家用的都是秋叶大佬的整合包的话,算法总共应该就是这些。常用的就是“R-ESRGAN 4x+”做写实图片,“R-ESRGAN 4x+Anime6B”做二次元图片。但是经常去C站,copy一些别人的作品却老是发现他们用的放大算法是什么“4x-UltraSharp”之类的高级货。那就是因为,这些高端的放大算法,你还没下载。所以,我在这里整理了四款更厉害的放大算法,分别是:“4x-UltraSharp”、“8x_NMKD-Superscale_150000_G”、“8x_NMKD-Typescale_175k”、“16xPSNR”。并将它们放在了云盘里,大家下载之后,将这四款放大算法放入“……\sd-webui-aki-v4.2\models\ESRGAN”这个路径之中,然后重启软件。就可以看到这四款新的放大算法了。我们以这张图作为例子来测试一下,这张图片现在分辨率是512*512。我将这张图发送到后期处理,分别使用一个传统算法“Lanczos”、一个常用算法“R-ESRGAN 4x+Anime6B”,和刚才下载的四个算法做一个对比。图片太小,大家可能看不清细节,我直接来做一下总结。传统放大算法Lanczos对原图没有任何优化,仅仅只是放大像素,直接pass。曾经的王者“R-ESRGAN 4x+Anime6B”表现蛮好的,放大之后,图片有了更多的细节和更清晰的轮廓。但是和新晋放大器“4x-UltraSharp”比起来,还是弱了一些,“4x-UltraSharp”拥有更清晰的细节,而且没有过度锐化的部分。

Others are asking
AI抠图
以下是关于 AI 抠图的相关信息: 可以直接抠图,也可以安装 PS 里的进行操作。图片上传即可抠图,可用于做一些素材,如叶子飘落、战斗时石头等素材,辅助做一些氛围动画。 有一键抠图的方式,省时省力。操作指引为点击智能抠图卡片,上传需要抠出主体物的图片。 可以使用 Iphone 手机自带的抠图功能、美图秀秀或者在网上找一些网站,如 https://www.remove.bg/zh ,直接上传图片即可。 目前有很多可以自动抠图的软件,无需像以前用 PS 一点一点抠图。
2024-12-28
可以一键抠图的ai
以下为一些可以一键抠图的 AI 工具和方法: 1. TecCreative:操作指引为点击智能抠图卡片,上传需要抠出主体物的图片。 2. remove:可以直接抠图,也可安装在 PS 里进行操作,图片上传即可抠图,可用于制作一些素材。 3. 手机自带抠图功能(如 Iphone)、美图秀秀或一些在线网站,如 https://www.remove.bg/zh ,直接上传图片即可。 希望这些信息对您有所帮助。
2024-12-16
建筑抠图ai
以下是关于建筑抠图 AI 的相关信息: AI 绘画常用提示词中与建筑相关的有:architectural sketching(建筑素描)、interior design(室内设计)等。 能够帮助建筑设计师审核规划平面图的 AI 工具包括: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,能引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现建筑全寿命周期内信息集成与管理。 需要注意的是,每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-12-09
ComfyUI与传统抠图方法有何不同?
ComfyUI 与传统抠图方法主要有以下不同: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理,而传统方法相对较为常规。 2. 自动化程度:ComfyUI 具有自动化工作流,能够消灭重复性工作,传统方法则需要较多人工操作。 3. 功能拓展:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等,传统方法功能相对单一。 4. 定制需求:ComfyUI 可根据定制需求开发节点或模块,传统方法在定制素材方面存在局限。 5. 效率:ComfyUI 生成抠图素材全程只需几秒,传统方法要么花钱购买,要么花费大量时间自己制作,且难以满足定制需求。 此外,ComfyUI 中的 BrushNet 是一种新颖的即插即用的双分支模型,具有以下特点和优势: 1. 能够将像素级遮罩图像特征嵌入任何预训练的扩散模型中,确保连贯且增强的图像修复结果。 2. 高效地从遮罩图像和潜在噪声中提取和整合特征,允许模型在图像生成过程中更好地理解和重建缺失或损坏的部分。 3. 通过与预训练的 UNet 网络结合使用,有效地增强图像细节和质量,适用于高分辨率图像修复任务。 4. 能够更加细致地处理图像的细节和边缘,确保修复后的图像与原始图像在内容和风格上保持一致。 通俗来讲,BrushNet 的工作过程类似于小时候的连点成图游戏: 1. 掩码:如同有洞的纸覆盖在图片上,让电脑了解需修复部分。 2. 编码器:将需修复图片转换成电脑能理解和处理的信息。 3. 噪声潜在空间:加入随机性使修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板帮助完成修复工作。 5. 去噪和生成图像:去除噪声并创建真实的图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片与原始图片融合。
2024-12-03
ai抠图
以下是关于 AI 抠图的相关内容: 在制作游戏 PV《追光者》时,可以直接抠图,也可以安装 PS 里的进行操作。将图片上传即可抠图,可用于制作一些素材,如叶子飘落、战斗时石头等素材,以辅助做一些氛围动画。 若要进行简单的抠图,可以使用 Iphone 手机自带的抠图功能、美图秀秀或者在网上找一些网站,如 https://www.remove.bg/zh ,直接上传图片即可。 目前还没有特别好的图片融合软件,可使用 PS 把图片合在一起,并通过简单的 P 图叠加技巧,最后换一个纯色背景。
2024-11-06
智能抠图的ai
以下是关于智能抠图的 AI 相关信息: 在制作游戏 PV《追光者》时,可以使用 remove 进行直接抠图,也可安装在 PS 里操作。图片上传即可抠图,可用于制作素材,辅助制作如叶子飘落、战斗时石头等氛围动画的素材。 可以使用 Iphone 手机自带的抠图功能、美图秀秀或者在网上找一些网站进行抠图。例如:https://www.remove.bg/zh ,直接上传图片即可。 目前有很多可以自动抠图的软件,能避免像以往在 PS 中一点一点抠图的繁琐。
2024-09-10
有什么工具可以一键总结B站视频并生成视频文稿的
以下是一些可以一键总结 B 站视频并生成视频文稿的工具和方法: 1. GPT:将 B 站视频的字幕提取后发给 GPT 进行总结。获取字幕的方法是,如果视频有字幕按钮,说明作者已上传字幕或后台适配了 AI 字幕。对于有字幕的视频,可以安装油猴脚本,安装后刷新浏览器,点击字幕会出现“下载”按钮,可选择多种字幕格式,然后将字幕文字内容复制发送给 GPT 进行总结。 2. BibiGPT:可以支持小红书、B 站等网站视频的归纳总结,还可以提问互动,答案会附上对应的视频节点。推荐链接:https://bibigpt.co/r/Bm63FV 、https://bibigpt.co/
2025-01-11
我想一键一句话生成一个网站用什么工具
以下是一些可以一键一句话生成网站的工具: 1. Figma to HTML:适用于 Figma 设计稿,不是图片。使用方法为在设计好的界面中,右击 Plugins Figma to HTML,选取设计稿并设置转换目标为 html 文件,点击 Convert 后开始下载,得到 html 文件。 2. Literally Anything:优点是极其方便,可用于获得复杂网页的部分小组件的代码;缺点是功能单一,很难实现精美网页。使用时描述想要生成的网页,点击 Edit Code 显示 html 代码。 3. Stunning:优点是便捷,制作的网页较为精美;缺点是灵活性不高。使用方法为点击 New Website 新建,根据需求选择对应的模版,和 Stunning AI 交流设计需求,一键生成网页并局部微调细节。 4. GPTs Instant Website :生成的网页可直接通过链接访问。 以下是一些制作网站的 AI 工具: 1. Zyro:网址:。特点:使用 AI 生成网站内容,包括文本、图像和布局建议;提供 AI 驱动的品牌和标志生成器;包含 SEO 和营销工具。 2. 10Web:网址:。特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计;提供一键迁移功能;集成 AI 驱动 SEO 分析和优化工具。 3. Jimdo Dolphin:网址:。特点:通过询问用户问题定制网站;提供自动生成的内容和图像;包含电子商务功能。 4. Site123:网址:。特点:简单易用,适合初学者;提供多种设计模板和布局;包括内置的 SEO 和分析工具。 此外还有: 1. Wix ADI。特点:基于用户提供的信息自动生成定制化网站;提供多个设计选项和布局;集成 SEO 工具和分析功能。 2. Bookmark:网址:。特点:AIDA 通过询问用户几个简单问题快速生成网站;提供直观的拖放编辑器;包括多种行业模板和自动化营销工具。 3. Firedrop:网址:。特点:Sacha 可根据用户指示创建和修改网站设计;提供实时编辑和预览功能;包含多种现代设计风格和自定义选项。 4. The Grid:网址:。特点:Molly 可自动调整网站的设计和布局;基于内容和用户互动进行优化;支持多种内容类型。
2024-12-30
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
出现了视频一键仿制的AI了吗
目前尚未有成熟且广泛应用的能够实现视频一键仿制的 AI 技术。虽然 AI 在视频处理和生成方面取得了一定的进展,但要达到一键仿制整个视频的程度,还面临着诸多技术挑战和法律、道德等方面的限制。
2024-12-02
一键生成流程图
以下为您提供几种一键生成流程图的方法: 1. 借助图像流生成扣子 Bot: 需求分析:在上次文章发布后,有朋友询问能否一键生成,答案是可以的。之前的方式无法直接生成图片,此次使用图片流处理图片,整个工作流程为用户输入关键词,大模型制作金句,生成画面描述,结合描述和关键词使用插件生成图片,再用图像流结合金句和图片。 扣子搭建:未详细提及。 使用链接:未详细提及。 总结:未详细提及。 2. 使用 ChatGPT 生成: 生成流程图有两种方式: 可视化拖拽:代表产品有 processon(web 工具)、visio(本地软件)。优点是直观,缺点是需花时间在布局上。 语法渲染成图形:代表语法为 Mermaid。优点是只用关注逻辑,文本即图形,方便嵌入 markdown 文件,且不同渲染引擎可渲染成多种样式;缺点是有点抽象。 3. 利用 Lucidchart 生成项目管理流程图: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能优化外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。
2024-11-29
帮我用最简单的方法解释一下时间序列模型
时间序列模型是用于分析和处理随时间变化的数据的一类模型。 例如,在评估 GPT4V 对时间序列和视频内容的理解时,会考虑其对现实世界中随时间展开的事件的理解能力,像时间预测、排序、定位、推理和基于时间的理解等。 在视频生成方面,如 Video LDM 模型,先训练图像生成器,再微调添加时间维度以生成视频。 总的来说,时间序列模型旨在理解和预测数据在时间上的变化规律和趋势。
2025-01-23
以豆包为例,如何通过API调用豆包大模型?
要通过 API 调用豆包大模型,以下是一些相关步骤和信息: 1. 直接调用大模型(之前完成过 coze 对接的同学,直接去二、百炼应用的调用): 百炼首页:https://bailian.console.aliyun.com/ 以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。 获取 key 的视频教程: 获取 key 的图文教程:以下是参考配置。 注意:需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 2. 创建大模型问答应用: 首先可以通过创建一个百炼应用,来获取大模型的推理 API 服务,用于实现 AI 助手。 创建应用: 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布,我们将在后面的步骤中去解决这一问题。 获取调用 API 所需的凭证: 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 3. 配置 FastGpt、OneAPI: 首先配置 OneAPI,还记得刚刚让您白嫖的大模型 API 吗?阿里的接口,这时要派上用场了,去阿里模型的链接里创建 ApiKey,并复制下来。然后在 OneAPI 的页面,点击【渠道】添加新渠道。添加时,类型选择阿里通义千问,名称自己取个,类型选择好后模型是会默认加进去,您不用删减,还有就把刚刚阿里那复制的 ApiKey 粘贴到秘钥里去。这样就 OK 了。后续有其他的大模型也是一样的添加方式。
2025-01-23
大模型训练方式
大模型的训练方式如下: 1. 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比其训练和使用过程: 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:即选择合适算法讲述“书本”内容,让大模型更好理解Token之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token被视为模型处理和生成的文本单位,能代表单个字符、单词等,在将输入进行分词时,会形成词汇表。 2. 100基础训练大模型的步骤: 步骤一·创建数据集:进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset),在数据集一栏中点击右上角创建数据集,输入数据集名称。zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件,也可以一张一张单独上传照片,但建议提前把图片和标签打包成zip上传。Zip文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 步骤二·Lora训练:点击Flux,基础模型会默认是FLUX 1.0D版本,选择数据集,点击右侧箭头,会跳出所有上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数,如果不知道如何设置,可以默认20重复次数和10轮训练轮数,可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条,训练完成的会显示出每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地。 步骤三·Lora生图:点击预览模型中间的生图会自动跳转到相应页面。模型上的数字代表模型强度,可在0.61.0之间调节,也可以自己添加lora文件,点击后会显示训练过的所有lora的所有轮次。VAE不需要替换,正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图,选择生成图片的尺寸,横板、竖版、正方形。采样器和调度器新手小白可以默认,迭代步数可以在2030之间调整,CFG可以在3.57.5之间调整,随机种子1代表随机生成图。所有设置都好了以后,点击开始生态,生成的图会显示在右侧。如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。如果确认了一张很合适的种子和参数,想要搞清放大,则点开高清修复,可以选择想放大的倍数,新手小白可以就默认这个算法,迭代步数建议在2030之间,重回幅度根据需求调整,正常在0.30.7之间调整。 3. 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
2025-01-23
大模型下文档投喂后,大模型是如何解读文档提取出答案?
大模型在文档投喂后解读文档并提取答案的过程通常包括以下步骤: 1. 问题解析阶段:接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,以确保问题向量能有效用于后续检索。 2. 知识库检索阶段:知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段,并抽取相关信息传递给下一步骤。 3. 信息整合阶段:接收检索到的信息,与上下文构建形成融合、全面的信息文本。整合信息准备进入生成阶段。 4. 大模型生成回答:整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。 在这个过程中还包括以下信息处理步骤: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时对信息的来源、时效性和相关性进行验证。 2. 消除冗余:识别和去除多个文档或数据源中可能存在的重复信息,以防在生成回答时出现重复或相互矛盾的信息。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建一个结构化的知识框架,使信息在语义上更加连贯。 4. 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合,形成一个统一的叙述或解答框架。 5. 语义融合:在必要时,合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 6. 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 最终,全新的上下文被一起传递给大语言模型。由于这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 相关概念: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可以理解为和大模型说的话、下达的指令。 Token:大模型语言体系中的最小单元,不同厂商的大模型对中文文本的切分方法不同,通常 1Token≈12 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。 上下文:英文通常翻译为 context,指对话聊天内容前、后的内容信息,上下文长度和上下文窗口都会影响大模型回答的质量。
2025-01-23
SD模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将文本输入到 SD 模型,经过一定迭代次数生成符合描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘输入图片使其更符合描述,如在沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本编码生成 Text Embeddings 特征矩阵,用于控制图像生成。 目前 SD 模型使用的是中的 Text Encoder 模型,其只包含 Transformer 结构,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小为 123M,输出 Text Embeddings 的维度为 77x768。 以下是相关资源获取方式: SD 模型权重:关注 Rocky 的公众号 WeThinkIn,后台回复“SD 模型”,可获得包含多种模型权重的资源链接。 SD 保姆级训练资源:关注 Rocky 的公众号 WeThinkIn,后台回复“SDTrain”,可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE、UNet 和 CLIP 三大模型的可视化网络结构图:关注 Rocky 的公众号 WeThinkIn,后台回复“SD 网络结构”,即可获得网络结构图资源链接。
2025-01-22
到今天,大语言模型还会产生“幻觉”吗
截至今天,大语言模型仍会产生“幻觉”。 大语言模型偶尔会根据输入输出一些荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都不尽如人意。产生“幻觉”的原因包括: 1. 样本存在错误(Imitative Falsehoods):如果大语言模型学习的“教材”中有错误,它也容易给出错误回答。缓解该问题的一个办法是上采样(Up Sampling)。 2. 信息过时(Outdated Factual Knowledge):以前正确的信息现在可能过时了。 此外,大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。如果在其训练过程中,模型被暴露于大量知识之中,它并没有完美地记忆所见到的信息,并不十分清楚自己的知识边界,可能会尝试回答有关深奥话题的问题,并虚构听起来有道理但实际不正确的内容。 在构建应用程序时,可以使用一些技术来避免这种情况,例如要求模型先从文本中找到相关引文,然后使用引文回答问题,并将答案追溯回源文件,这通常有助于减少“幻觉”的发生。
2025-01-22
nova有个图生视频的功能,但是只能生成6秒钟,我要如何组合服务去实现可以文生长视频并且也可以图生长视频呢
以下是一些实现文生长视频和图生长视频的方法: 1. 使用 PixVerse V2 模型: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. 利用 runway: 视频的大部分片段用 runway(https://app.runwayml.com/)制作,少数的片段用的是即梦(https://jimeng.jianying.com/aitool/home)的动效画板和首尾帧。 以汽车内饰这一片段为例,登录 runway 账户后,在首页的左侧点击“Text/Imagine to Video”,中文即是“文生视频/图生视频”。点击 2 处将汽车内饰的图片上传到 runway 中。其中 1 处可以更改生成图片所用到的大模型版本,数字越大代表模型越强。目前只有 Gen2 每天有免费额度。3 处用于输入提示词。4 处可以修改生成的视频时长为 5s 或 10s,时长越长,生成的效果可能越不稳定。5 处可以看到生成的结果。提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”是,即摄像机围绕垂直轴顺时针旋转,常用于创造动态的、有时令人眩晕的视觉效果。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词该如何填写呢?可以参照:。runway 对于这些专有的运镜方式理解的很好。其他的提示词可以不填,先看看效果,如果效果不好,再补充简短的提示词重新生成视频。很多时候提示词过多,生成的视频就很怪异,像吃了毒蘑菇后看到的幻觉一样。改变提示词,改变生成时长,多抽卡几次,毕竟 runway 会员可以无限抽卡。 3. 海外产品 viva: viva 发布了首个开放给全部用户使用的 Sora 同架构视频生成模型,而且现阶段免费。支持文本生成视频、图片生成视频以及 4K 分辨率放大功能,另外也支持提示词的自动优化。文生视频单次可以生成一条 5 秒的视频,图生视频是 4 秒视频。
2024-12-19
常用的prompt的自动化词条组合有哪些?
以下是一些常用的 prompt 自动化词条组合: 1. 情境:这是一个基础的提示词框架,可作为入手选择。 2. 对于 Dynamic Prompts 插件,魔法提示词能自动生成补充,如勾选魔法提示词并设置相关参数,包括创意度、模型选择等。以 MagicPrompt 模型为例,能根据输入的关键词生成丰富的补充内容。 3. 在 Prompt 的基础篇中,每个单独的提示词叫 tag(关键词),支持英语及 emoji 。语法规则包括用英文半角逗号分隔 tag ,改变 tag 权重有两种写法,还能进行 tag 的步数控制。 如果您觉得这些例子过于复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版微信群运营文案、安排减脂餐、列学习计划、设计商务会议调研问卷等,来思考能帮助简单自动化的场景。
2024-10-18
AI能给数字组合排序吗
是的,AI可以对数字组合进行排序。排序是一项基本的计算机科学任务,可以通过多种算法实现。以下是几种常用的排序算法,以及如何利用AI和编程语言实现这些排序任务: 常见排序算法 1. 冒泡排序(Bubble Sort) 描述:比较相邻的元素,如果它们的顺序错误就交换,直到列表有序。 时间复杂度:O 2. 选择排序(Selection Sort) 描述:找到列表中最小的元素并将其放在已排序部分的末尾,重复该过程。 时间复杂度:O 3. 插入排序(Insertion Sort) 描述:逐步构建有序序列,对于未排序部分中的每个元素,将其插入到已排序部分的正确位置。 时间复杂度:O 4. 快速排序(Quick Sort) 描述:选择一个基准元素,将列表分成小于基准和大于基准的两部分,然后递归地对这两部分进行排序。 时间复杂度:O 5. 归并排序(Merge Sort) 描述:将列表分成两半,递归地排序这两半,然后合并排序后的两半。 时间复杂度:O 使用Python实现排序 可以使用Python中的排序函数`sorted`,也可以自己实现上述算法。以下是一些示例: 使用内置函数 ```python 使用sorted函数 numbers = sorted_numbers = sorted print 使用list.sort方法 numbers.sort print ``` 实现快速排序 ```python def quicksort: if len <= 1: return arr pivot = arr left = middle = right = return quicksort numbers = sorted_numbers = quicksort print ``` 使用AI排序 AI可以通过实现或优化排序算法,尤其是在处理大型数据集或特定排序需求时。深度学习和机器学习模型通常不会直接用于排序,但在某些复杂情况下,AI可以辅助排序任务,例如优化排序算法或处理带有特定特征的数据。 示例:TensorFlow排序 虽然深度学习框架如TensorFlow和PyTorch主要用于复杂的数据处理和模型训练,但也可以用于实现排序任务。以下是一个简单的TensorFlow排序示例: ```python import tensorflow as tf @tf.function def bubble_sort: n = tf.shape for i in tf.range: for j in tf.range: if arr: temp = arr arr arr = temp return arr numbers = tf.constant sorted_numbers = bubble_sort print ``` 以上是一些示例和方法,展示了如何使用AI和常规编程技术来对数字组合进行排序。选择合适的方法取决于具体的应用场景和需求。
2024-05-30