直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

transformer原理

回答

Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点:

  1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络那样逐个位置处理。通过该机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。
  2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,引入了位置编码。位置编码是一种特殊向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到的固定向量,帮助模型学习到位置信息的表示。
  3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。
  4. 残差连接和层归一化:在每个子层(Self-Attention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使模型更易训练和优化;层归一化能加速训练过程,并提高模型的泛化能力。
  5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。

通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。

内容由 AI 大模型生成,请仔细甄别。类似问题:Transformer 是什么?

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:Transformer模型的原理是

[title]问:Transformer模型的原理是Transformer模型是一种基于注意力机制(Attention Mechanism)的深度学习模型,由Vaswani等人在论文《Attention is All You Need》中提出,用于处理序列到序列(sequence-to-sequence)的任务,如机器翻译、文本摘要等。Transformer模型的原理主要包括以下几个关键点:

问:Transformer模型的原理是

[title]问:Transformer模型的原理是1.自注意力机制(Self-Attention Mechanism):Transformer模型使用了自注意力机制,能够同时考虑输入序列中所有位置的信息,而不是像循环神经网络(RNN)或卷积神经网络(CNN)一样逐个位置处理。通过自注意力机制,模型可以根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。2.位置编码(Positional Encoding):由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,Transformer模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常是基于正弦和余弦函数计算得到的固定向量,可以帮助模型学习到位置信息的表示。3.多头注意力机制(Multi-Head Attention):Transformer模型通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询(Query)、键(Key)和值(Value)向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。4.残差连接(Residual Connection)和层归一化(Layer Normalization):在每个子层(Self-Attention层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可以加速训练过程,并提高模型的泛化能力。5.位置感知前馈网络(Position-wise Feed-Forward Networks):在每个注意力子层之后,Transformer模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。

问:Transformer模型的原理是

[title]问:Transformer模型的原理是通过以上关键点,Transformer模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。内容由AI大模型生成,请仔细甄别类似问题:Transformer是什么?

其他人在问
transformer原理详解
Transformer 模型的原理主要包括以下几个方面: 1. 自注意力机制(SelfAttention Mechanism):能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络那样逐个位置处理。通过该机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码(Positional Encoding):由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,引入位置编码。位置编码是一种特殊向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到固定向量,帮助模型学习位置信息的表示。 3. 多头注意力机制(MultiHead Attention):通过引入该机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接(Residual Connection)和层归一化(Layer Normalization):在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间引入残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使模型更易训练和优化;层归一化能加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络(Positionwise FeedForward Networks):在每个注意力子层之后,包含位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立计算,提高了模型的并行性和计算效率。 此外,用一个简单的例子解释其工作流程:假设要将英文句子“I am a student”翻译成中文。 1. 输入嵌入(Input Embeddings):首先将每个单词映射为一个向量,即单词嵌入。 2. 位置编码(Positional Encodings):给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,即多头注意力机制捕捉单词间的依赖关系,前馈神经网络对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。
2024-10-18
transformer
Transformer 的工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有捕获序列顺序的结构,需给每个词位置加上位置编码,让模型知晓词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,即多头注意力机制(MultiHead Attention)捕捉单词间的依赖关系,以及前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 具有诸多优势,例如可以非常有效地并行化,这意味着只要有合适的硬件,就能训练出非常大的模型。像 GPT3 这样令人印象深刻的文本生成模型,其写作能力几乎与人类相当,就是在 45TB 的文本数据上训练而成的。Transformer 使神经网络能够更高效地理解和生成语言,通过并行分析散文块,找出值得关注的元素,极大地优化了生成连贯文本以响应提示的过程。最终,同样的技术还可以生成图像甚至视频。
2024-10-18
帮我解释一下transformer
Transformer 的工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“ I ”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有能捕获序列顺序的结构,如递归或卷积,所以给每个词位置加上位置编码,让模型知晓词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention),用于捕捉单词间的依赖关系;二是前馈神经网络(FeedForward NN),对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器同样由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成“我”“是”等单词的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。 Transformer 是一个大参数(千亿级别)的回归方程,其底层是 function loss 损失函数。它是在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。回归方程的 Function loss 拟合 A to B mapping 关系,实现数据集的压缩与还原。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC;AGI 指通用人工智能。公众传播一般会混用上述名词,但底层是 Transformer 结构。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。它与 Alpha Go 有差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,有推理能力,但大语言模型在推理这块很弱。Transformer 决定 LLM 是一个生成式模型。
2024-10-12
transformer原理
Transformer 模型的原理主要包括以下几个方面: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,层归一化可以加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。
2024-08-09
最简单易懂的transformer图示
为了方便理解,我会尽量使用非技术术语进行解释,并配上一些图表。 Transformer 是 Google Research 于 2017 年提出的一种神经网络架构,它已经被证明了在自然语言处理 任务中的有效性,并被广泛应用于机器翻译、文本摘要、问答等领域。 Transformer 的基本原理是通过 注意力机制 来学习词与词之间的依赖关系,从而更好地理解句子的语义。 以下是一张简化的 Transformer 架构图: ! 图中主要包含以下几个部分: 编码器 : 编码器由多个相同的编码器层组成,每个编码器层又由两个子层组成: 自注意力层 : 自注意力层负责学习词与词之间的依赖关系。 前馈神经网络层 : 前馈神经网络层负责对每个词进行非线性变换。 解码器 : 解码器由多个相同的解码器层组成,每个解码器层又由三个子层组成: 自注意力层 : 解码器的自注意力层负责学习词与词之间的依赖关系,以及词与编码器输出之间的依赖关系。 编码器解码器注意力层 : 编码器解码器注意力层负责将编码器输出的信息传递给解码器。 前馈神经网络层 : 解码器的前馈神经网络层负责对每个词进行非线性变换。 位置编码 ,因此需要显式地将位置信息编码到输入序列中。 Transformer 的工作流程如下: 1. 将输入序列转换为词嵌入表示。 2. 编码器对输入序列进行编码,并输出编码器输出序列。 3. 解码器以自注意力机制为基础,根据编码器输出序列和之前生成的输出词,预测下一个词。 4. 重复步骤 3,直到生成完整的输出序列。 Transformer 的注意力机制是其核心思想,它使 Transformer 能够捕获长距离依赖关系,从而更好地理解句子的语义。 以下是一张简化的注意力机制示意图: ! 图中主要包含以下几个部分: 查询 : 查询代表要计算注意力的词。 键 : 键代表所有候选词。 值 : 值代表所有候选词的语义信息。 注意力分数 : 注意力分数代表查询词与每个候选词之间的相关程度。 加权值 : 加权值代表每个候选词对查询词的贡献程度。 注意力机制的计算过程如下: 1. 对查询、键和值进行缩放变换。 2. 计算查询与每个键的点积。 3. 对点积进行 softmax 运算,得到注意力分数。 4. 将注意力分数与值相乘,得到加权值。 5. 将所有加权值求和,得到最终的输出。 Transformer 模型的出现是 NLP 领域的一个重大突破,它使 NLP 任务的性能得到了大幅提升。Transformer 模型及其衍生模型已经被广泛应用于各种 NLP 任务,并取得了 stateoftheart 的结果。 希望以上解释能够帮助您理解 Transformer 的基本原理。
2024-04-29
transformer 如何用于asr 识别问题
Transformer模型在自动语音识别(ASR)系统中发挥着重要作用。ASR系统的目标是将人类的语音转换成相应的文本表示。以下是Transformer模型在ASR系统中的一些关键应用: 1. 声学模型:在传统的ASR系统中,声学模型用于将声学信号(语音)映射到声学单元(如音素或字母)。Transformer模型,特别是基于注意力机制的架构,可以有效地捕捉时间序列数据中的长距离依赖关系,这对于理解语音信号非常重要。 2. 端到端识别:Transformer模型可以实现端到端的ASR,这意味着它可以直接将音频输入转换为文本输出,而不需要传统的声学模型和语言模型分离的架构。这种端到端的方法简化了训练过程,并且可以提高识别的准确性。 3. 注意力机制:Transformer模型的核心是自注意力机制,它允许模型在预测文本的每个字符时考虑不同时间步长的语音输入。这有助于模型更好地理解语音中的上下文信息。 4. 并行处理:与循环神经网络(RNN)相比,Transformer模型的注意力机制可以高效地并行处理,这对于加速训练和推理过程非常有利。 5. CTC(Connectionist Temporal Classification):在某些实现中,Transformer模型与CTC损失函数结合使用。CTC允许模型在没有明确时间对齐的情况下,从语音信号中直接输出文本序列。 6. 语言模型集成:Transformer模型可以与预训练的语言模型集成,以提高对语言结构和语法的理解,从而提高ASR系统的整体性能。 7. 多语言和方言识别:由于Transformer模型的灵活性和强大的表示能力,它可以被用来构建多语言或方言的ASR系统。 8. 鲁棒性:Transformer模型可以通过训练数据的多样化来提高ASR系统在不同口音、背景噪音和录音条件下的鲁棒性。 9. 实时识别:尽管Transformer模型通常比较复杂,但通过模型优化和压缩技术,它们可以被部署在实时ASR系统中。 10. 预训练和微调:可以利用大量的语音数据对Transformer模型进行预训练,然后在特定领域的数据上进行微调,以提高特定用例的性能。 在实际应用中,构建一个高效的ASR系统可能需要结合多种技术,包括传统的声学处理技术、深度学习模型以及优化算法。Transformer模型由于其在处理序列数据方面的优势,已成为当前ASR领域的研究热点之一。
2024-04-22
模型训练的底层原理
模型训练的底层原理如下: 对于多模态模型,以生图片环节的扩散模型(如 StableDiffusion)为例,其训练过程是先对海量带有标注文字描述的图片逐渐加满噪点,模型学习并沉淀每一步图片向量值和文字向量值的数据分布演变规律。后续输入文字后,模型根据文字转化的向量指导充满噪点的图片减噪点以生成最终图片。 大语言模型在接收到请求时,会将自然语言转化为机器可理解的向量格式。其训练过程类似于通过已知的几组值计算方程式中的参数,大语言模型的参数可能多达 1750 亿个。 大型语言模型(LLMs)的参数获取是关键,训练是一个计算量极大的过程,如 Llama2 70B 模型的训练涉及约 10TB 的互联网文本抓取,需要大量互联网资源和约 6000 个 GPU 运行约 12 天,花费约 200 万美元,将文本压缩成参数文件,这是一种有损压缩,得到的是训练文本的一种格式塔。
2024-10-15
我是一个程序员,我想快速且有一点深度的重头梳理AGI的原理与自定义AGI应用的开发流程与方法, 请帮我梳理一下AGI学习的路线
以下是为您梳理的 AGI 学习路线: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 学习路径方面: 关键词:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。 学习路径如同主线+支线的游戏通关。 学以致用,通过学习分享不断填补知识的缝隙来成长。 4. 分类学习方面: 对 AI 学习路径进行了重构,分为了初学者、面向开发应用者、面向使用模型者三个部分。 将课程目录从文章中单独独立出来,并按照初学者、进阶者进行分类。 同时,还可以参考以下个人心得: YoYo 作为文科生,在学习前不理解 AI 和提示词工程,通过不断尝试各种 AI 工具,走了不少弯路。学习后能够搓多 Agent 的智能体,进行营销文案 demo、SQL 代码进阶学习应用,创建多个智能体,并在公司中实践智能客服从创建到应用的过程。 希望以上内容对您有所帮助。
2024-10-08
图生图的原理
图生图的原理如下: 上传图片后,Stable Diffusion(SD)会根据您上传的图片、选择的模型、输入的 Prompt 提示词等信息进行重绘。重绘幅度越大,输出的图和输入的图差别就越大。 文生图高清修复的原理是命令 AI 按照原来的内容重新画一幅,新生成的绘图和原来的绘图在细节上会有所不同。若想更接近原图细节,可适当降低重绘幅度。 从技术路径来看,基于 GAN(Generative Adversarial Network)的文生图原理是:GAN 由生成器和判别器构成,通过训练二者进行对抗学习,学习数据的分布,并生成新的数据样本。生成器试图生成与真实数据相似的样本,判别器则试图区分生成的样本和真实样本,二者通过对抗过程训练,直到判别器无法区分生成和真实样本为止。代表模型有 DFGAN、StackGAN++、GoGAN、AttnGAN 等。
2024-09-30
midjourney绘制原理是什么
Midjourney 的绘制原理包括以下方面: 1. 多人群像 Z 轴空间内容输出(7 步): 第一步:模拟场景,优先生成“构图”为主的画面,因为 Midjourney 的出图原理具有随机性,过多内容在一张图时难以控制效果,尤其是侧身角度过去的透视视角图。 第二步:抓取关键要素“风格参考图”,图片能让 Midjourney 更好地理解(读取)空间关系。若没有现成的图,可通过巧思处理。 第三步:回到 Midjourney 进行垫图(即梦出的图作为 sref,原始侧身照作为 cref)+ prompt 抽图。 第四步:对生成的图进行重绘和精修,如调整站姿、面部等。 2. 以图绘图功能:先选一张满意的图片,在 Discord 社区的 Midjourney 服务器上传,获取图片链接,然后结合 prompt 提示词发送给 Midjourney,它会根据需求生成特定图片。 此外,目前市面上主流的 AI 绘图软件有 Stable Diffusion 和 Midjourney。Stable Diffusion 开源免费、可本地化部署、创作自由度高,但对电脑配置尤其是显卡有要求;Midjourney 操作简单方便、创作内容丰富,但需要科学上网且付费。
2024-09-20
GPT原理是什么,用 浅显语言逐层说明
ChatGPT 的原理可以用浅显的语言逐层说明如下: 首先,它获取与迄今为止的文本相对应的 token 序列,并找到表示它们的嵌入(即一组数字的数组)。 然后,在这个嵌入上进行操作,以“标准神经网络方式”,值“逐层流动”到网络的连续层中,从而生成一个新的嵌入(即一个新的数字数组)。 接着,从这个数组的最后一部分生成一个大约有 50,000 个值的数组,这些值将变成不同可能的下一个 token 的概率。 关键是,这个流程的每个部分都是由神经网络实现的,其权重由端到端的网络训练确定。 此外,您还可以通过以下资源更深入地了解: 视频: 《ChatGPT 诞生记:先捞钱,再谈理想|OpenAI 翻身史》,林亦 LYi 讲解, 《【渐构】万字科普 GPT4 为何会颠覆现有工作流》,YJango 讲解, 《终于有人把 chatGPT 说清楚了——全网最深入浅出的 chatGPT 原理科普》,新石器公园讲解 文章: 《ChatGPT 中,G、P、T 分别是什么意思?》, 《大白话聊 ChatGPT》,逐字稿:
2024-09-18