Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

帮我解释一下transformer

Answer

Transformer 的工作流程如下:

  1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“ I ”映射为一个 512 维的向量。
  2. 位置编码(Positional Encodings):由于 Transformer 没有能捕获序列顺序的结构,如递归或卷积,所以给每个词位置加上位置编码,让模型知晓词语的相对位置。
  3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(Multi-Head Attention),用于捕捉单词间的依赖关系;二是前馈神经网络(Feed-Forward NN),对 attention 的结果进行进一步编码。
  4. 解码器(Decoder):编码器的输出被送入解码器层。解码器同样由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。
  5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成“我”“是”等单词的概率。
  6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。

注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。

Transformer 是一个大参数(千亿级别)的回归方程,其底层是 function loss 损失函数。它是在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。回归方程的 Function loss 拟合 A to B mapping 关系,实现数据集的压缩与还原。

在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC;AGI 指通用人工智能。公众传播一般会混用上述名词,但底层是 Transformer 结构。

大语言模型是一个 perfect memory,repeat 曾经出现的内容。它与 Alpha Go 有差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,有推理能力,但大语言模型在推理这块很弱。Transformer 决定 LLM 是一个生成式模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:能通过简单易懂的方法跟我讲一下 transform 的工作流程吗?

[title]问:能通过简单易懂的方法跟我讲一下transform的工作流程吗?当然可以,让我用一个简单的例子来解释一下Transformer的工作流程:假设我们有一个英文句子"I am a student"需要翻译成中文。Transformer的工作方式如下:1.输入嵌入(Input Embeddings)首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如"I"映射为一个512维的向量。2.位置编码(Positional Encodings)因为Transformer没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。3.编码器(Encoder)输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分:a)多头注意力机制(Multi-Head Attention)捕捉单词间的依赖关系。b)前馈神经网络(Feed-Forward NN)对attention的结果进行进一步编码。4.解码器(Decoder)编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。5.输出嵌入(Output Embeddings)解码器最后一层的输出被映射为输出单词概率分布。例如生成单词"我"、"是"等概率。6.生成(Generation)基于概率分布,以贪婪或beam search等解码策略生成完整的输出序列。

问:能通过简单易懂的方法跟我讲一下 transform 的工作流程吗?

[title]问:能通过简单易懂的方法跟我讲一下transform的工作流程吗?注意力机制是Transformer最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化则有助于优化网络。整体上,Transformer无递归和卷积结构,计算并行化程度高,更适合并行加速。这就是一个高层次上的Transformer工作流程概览。实际实现细节则会更加复杂一些。希望这个解释对你有帮助!内容由AI大模型生成,请仔细甄别

邬嘉文:大模型应用层

在CES 2024,李飞飞在争论LLM和AIGC名称不能混用,吴恩达觉得在公众传播没关系。李飞飞觉得难以接受,个人猜测是它模糊了大模型的本质。在公众传播层面:AIGC:指用Stable Diffusion或Midjourney生成图像内容,后来泛指用AI生成音乐、图像、视频等内容。LLM:指NLP领域的大语言模型,如ChatGPT。GenAI:生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了LLM和AIGC。AGI:指通用人工智能,部分人觉得LLM具有AGI潜力,LeCun反对。公众传播一般会混用上述名词,但底层是transformer结构。(stable diffusion原采用LDM+UNet,后来改为DiT)而transformer底层是function loss损失函数Transformer是一个大参数(千亿级别)的回归方程。回归方程的Function loss拟合A to B mapping关系,实现数据集的压缩与还原。Transformer是在一定prompt condition情况下,repeat曾经出现过的数据内容,实现“生成”能力。大语言模型的智能体验在两个数据集压缩后,能解释两个数据集之间地带的“连续”能力。(Ilya)所以大语言模型是一个perfect memory,repeat曾经出现的内容。它与Alpha Go差异:Alpha Go是一个增强学习模型,学习结果会调整模型自身参数Alpha Go有推理能力,但大语言模型这块很弱。Transformer决定LLM是一个生成式模型。

Others are asking
LSTM/Transformer/GAN等AI技术分别是指
LSTM(Long ShortTerm Memory)是一种特殊的循环神经网络(RNN),能够处理长序列数据中的长期依赖关系。 Transformer 是一种完全基于自注意力机制(SelfAttention)来处理序列数据的模型,不依赖于循环神经网络(RNN)或卷积神经网络(CNN),比 RNN 更适合处理文本的长距离依赖性。 GAN(Generative Adversarial Network)即生成对抗网络,由生成器和判别器组成,通过两者的对抗训练来生成新的数据。
2025-02-06
什么是transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文。它主要用于处理序列数据,包括热门的 NLP 任务。与传统模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。 Transformer 采用完全并行的计算方式,借助 GPU 加速训练速度,并引入自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。 最流行的基于 Transformer 的模型之一是 BERT,它是“来自 Transformer 的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。BERT 已进入几乎所有的 NLP 项目,包括谷歌搜索。它可以扩展来解决一系列不同的任务,如文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户的查询等。 此外,Transformer 不仅在自然语言处理领域发挥重要作用,如谷歌搜索去年推出的基于 Transformer 的聊天机器人 Meena,还在自然语言处理之外掀起了浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-01-16
transformer详解
Transformer 是一种基于注意力机制的编码器解码器模型,其工作流程如下: 1. 输入嵌入:将每个单词映射为一个向量,即单词嵌入。例如,“I”映射为一个 512 维的向量。 2. 位置编码:由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器:输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制:捕捉单词间的依赖关系。 前馈神经网络:对 attention 的结果进行进一步编码。 4. 解码器:编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入:解码器最后一层的输出被映射为输出单词概率分布。 6. 生成:基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 最流行的基于 Transformer 的模型之一 BERT,是“来自 Transformer 的双向编码器表示”的缩写。它被谷歌的研究人员引入,很快就进入了几乎所有的 NLP 项目,包括谷歌搜索。BERT 不仅指模型体系结构,还指经过训练的模型本身,您可以在。谷歌的研究人员在一个庞大的文本语料库上对它进行了训练,它已经成为一种用于自然语言处理的通用模型,可以扩展来解决一系列不同的任务,比如: 文本摘要 问答 分类 命名实体识别 文本相似度 攻击性信息/脏话检测 理解用户的查询 Transformer 基于 2017 年发表的一篇名为《Attention Is All You Need》的论文。尽管 Transformers 之前的所有模型都能够将单词表示为向量,但这些向量并不包含上下文。单词的用法会根据上下文而变化。Transformer 模型由编码器和解码器组成。编码器对输入序列进行编码并将其传递给解码器,解码器解码相关任务的表示。编码组件是一堆相同数量的编码器。介绍 Transformers 的研究论文将六个编码器堆叠在一起。六不是一个神奇的数字,它只是一个超参数。编码器在结构上都是相同的,但具有不同的权重。 Transformer 不仅在自然语言处理领域表现出色,如 BERT、GPT3、Meena 等模型,还在自然语言处理之外掀起了一股浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-01-10
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。以下为您详细介绍其工作流程: 假设我们有一个英文句子“I am a student”需要翻译成中文。 1. 输入嵌入(Input Embeddings):首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 主要用于处理序列数据,包括现在最火的 NLP 任务。与之前的模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。它可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 GPT3、BERT、T5 等功能强大的自然语言处理(NLP)模型都是基于 Transformer 模型。如果您想在机器学习,特别是自然语言处理方面与时俱进,至少要对 Transformer 有一定的了解。
2025-01-10
如何深入浅出的讲解Transformer
Transformer 的工作流程可以通过一个简单的例子来解释,比如将英文句子“I am a student”翻译成中文: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,让模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention)用于捕捉单词间的依赖关系,二是前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 此外,aaronxic 从自己实际入坑的经验出发,总结梳理了新手友好的 transformer 入坑指南,计划从以下五个方面进行介绍: 1. 算法 1:NLP 中的 transformer 网络结构。 2. 算法 2:CV 中的 transformer 网络结构。 3. 算法 3:多模态下的 transformer 网络结构。 4. 训练:transformer 的分布式训练。 5. 部署:transformer 的 tvm 量化与推理。 同时,aaronxic 还针对 perplexity 指标进行了介绍,会先从大家熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍基于此改进的 perplexity 指标。
2024-12-27
2. Transformer
Transformer 是自然语言处理领域中的一种重要模型架构。以下是一些与 Transformer 相关的内容: 在“皇子:LLM 经典论文速读版,看完感觉自己通透了”中,Transformer 是众多被讨论的模型之一,与 GPT1、BERT 等一同被提及。 在“Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】”中,从核心本质上看,Sora 是一个具有灵活采样维度的扩散变压器。 在“机器之心的进化/理解 AI 驱动的软件 2.0 智能革命”中,有众多与 Transformer 相关的参考资料,如“Attention Is All You Need”论文等。
2024-12-27
帮我用最简单的方法解释一下时间序列模型
时间序列模型是用于分析和处理随时间变化的数据的一类模型。 例如,在评估 GPT4V 对时间序列和视频内容的理解时,会考虑其对现实世界中随时间展开的事件的理解能力,像时间预测、排序、定位、推理和基于时间的理解等。 在视频生成方面,如 Video LDM 模型,先训练图像生成器,再微调添加时间维度以生成视频。 总的来说,时间序列模型旨在理解和预测数据在时间上的变化规律和趋势。
2025-01-23
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
请解释一下AI智能体的概念及功能
AI 智能体是指类似于 AI 机器人小助手的存在。简单理解,参照移动互联网,它类似 APP 应用的概念。AI 大模型是技术,而面向用户提供服务的产品形式就是智能体,所以很多公司关注 AI 应用层的产品机会。 在 C 端,比如社交方向,用户注册后先创建自己的智能体,然后让其与他人的智能体聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有帮助 B 端商家搭建智能体的机会,类似 APP 时代专业做 APP 的。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。AI 智能体拥有各项能力,能帮我们做特定的事情。它包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。AI 智能体的出现是为了解决像 GPT 或者文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,结合自身业务场景和需求,定制出适合自己的智能体来解决问题。 例如,扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可将其发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-12-17
帮我解释一下AI和人工智能、机器学习的关系
AI 即人工智能,是一个广泛的概念,旨在让计算机模拟人类智能。 机器学习是人工智能的一个重要分支。它指的是计算机通过寻找数据中的规律进行学习,包括监督学习、无监督学习和强化学习等方式。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习处理的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习则是从反馈中学习,以最大化奖励或最小化损失,类似于训练小狗。 深度学习是一种参照人脑神经网络和神经元的方法,由于具有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI ,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解,像上下文理解、情感分析、文本分类等,但不擅长文本生成。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-15
我是一个小学生,给我解释一下什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。简单来说,就是让计算机或机器能像我们人类一样思考和学习的技术。 在小学课堂上,可以用学生能理解的语言来解释 AI。比如,先和学生互动,听听他们口中的 AI,再引出我们的概念。可以告诉学生,AI 就像一个聪明的机器人,它可以通过学习和分析大量的数据,来完成各种任务,例如识别图像、语音识别、翻译等。 虽然计算机已经很先进了,但有些任务我们并不知道明确的解法,例如从一个人的照片中来判断他/她的年龄。而 AI 对这种类型的任务感兴趣,它可以通过学习和分析大量的照片数据,来学会如何判断一个人的年龄。 总之,AI 是一种非常酷的技术,它可以帮助我们解决很多难题,让我们的生活变得更加便捷和有趣。
2024-07-09