Transformer 的工作流程如下:
注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。
Transformer 是一个大参数(千亿级别)的回归方程,其底层是 function loss 损失函数。它是在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。回归方程的 Function loss 拟合 A to B mapping 关系,实现数据集的压缩与还原。
在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC;AGI 指通用人工智能。公众传播一般会混用上述名词,但底层是 Transformer 结构。
大语言模型是一个 perfect memory,repeat 曾经出现的内容。它与 Alpha Go 有差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,有推理能力,但大语言模型在推理这块很弱。Transformer 决定 LLM 是一个生成式模型。
[title]问:能通过简单易懂的方法跟我讲一下transform的工作流程吗?当然可以,让我用一个简单的例子来解释一下Transformer的工作流程:假设我们有一个英文句子"I am a student"需要翻译成中文。Transformer的工作方式如下:1.输入嵌入(Input Embeddings)首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如"I"映射为一个512维的向量。2.位置编码(Positional Encodings)因为Transformer没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。3.编码器(Encoder)输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分:a)多头注意力机制(Multi-Head Attention)捕捉单词间的依赖关系。b)前馈神经网络(Feed-Forward NN)对attention的结果进行进一步编码。4.解码器(Decoder)编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。5.输出嵌入(Output Embeddings)解码器最后一层的输出被映射为输出单词概率分布。例如生成单词"我"、"是"等概率。6.生成(Generation)基于概率分布,以贪婪或beam search等解码策略生成完整的输出序列。
[title]问:能通过简单易懂的方法跟我讲一下transform的工作流程吗?注意力机制是Transformer最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化则有助于优化网络。整体上,Transformer无递归和卷积结构,计算并行化程度高,更适合并行加速。这就是一个高层次上的Transformer工作流程概览。实际实现细节则会更加复杂一些。希望这个解释对你有帮助!内容由AI大模型生成,请仔细甄别
在CES 2024,李飞飞在争论LLM和AIGC名称不能混用,吴恩达觉得在公众传播没关系。李飞飞觉得难以接受,个人猜测是它模糊了大模型的本质。在公众传播层面:AIGC:指用Stable Diffusion或Midjourney生成图像内容,后来泛指用AI生成音乐、图像、视频等内容。LLM:指NLP领域的大语言模型,如ChatGPT。GenAI:生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了LLM和AIGC。AGI:指通用人工智能,部分人觉得LLM具有AGI潜力,LeCun反对。公众传播一般会混用上述名词,但底层是transformer结构。(stable diffusion原采用LDM+UNet,后来改为DiT)而transformer底层是function loss损失函数Transformer是一个大参数(千亿级别)的回归方程。回归方程的Function loss拟合A to B mapping关系,实现数据集的压缩与还原。Transformer是在一定prompt condition情况下,repeat曾经出现过的数据内容,实现“生成”能力。大语言模型的智能体验在两个数据集压缩后,能解释两个数据集之间地带的“连续”能力。(Ilya)所以大语言模型是一个perfect memory,repeat曾经出现的内容。它与Alpha Go差异:Alpha Go是一个增强学习模型,学习结果会调整模型自身参数Alpha Go有推理能力,但大语言模型这块很弱。Transformer决定LLM是一个生成式模型。