Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述

Answer

利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面:

  1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。
  2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。
  3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。
  4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。

游戏人工智能技术的未来发展方向还包括:

  1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。
  2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。

随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。

Content generated by AI large model, please carefully verify (powered by aily)

References

游戏:游戏AI发展报告2023:历史演变、技术革新与应用前景

05.能未来发展:游戏人工智能将成为生产力革命的关键休闲是人类生活不可或缺的重要组成部分,而游戏是一种特别引人入胜的休闲方式。电子游戏是游戏的新模式,是时代的产物,是发展最为迅猛的方向,电子游戏的发展壮大与人工智能的进程相互呼应,相得益彰,同向同行,携手共进。游戏人工智能技术的未来发展方向之一,是探索如何将游戏环境中的成果迁移至现实世界。电子游戏作为人工智能算法的测试场,将持续为人工智能模型的构建与训练,提供理想化的场所。IBM的深蓝,DeepMind的AlphaGo,OpenAI的OpenAI Five都通过机器学习、强化学习等先进技术在各种游戏环境中训练人工智能,并取得了显著的成果。然而,值得注意的是,虽然人工智能在特定的游戏环境中取得了显著的成果,但将这些技术推广到更广泛的、复杂的现实世界应用,仍然面临许多挑战。例如,电子游戏环境通常是封闭和可控的,而现实世界却充满了未知和不确定性。此外,游戏中的胜利条件往往是明确和一致的,而现实生活中的目标可能会有多个,可能互相冲突,或者会随时间变化。无疑,电子游戏是人工智能研究的理想实验场,因为它们为人工智能提供了一个可以精确度量和比较性能的环境;然而,从游戏环境迁移到现实世界中的应用,还需要学界与产业界进一步进行研究和发展。游戏人工智能技术的未来发展方向之二,是利用AIGC技术,实现游戏产业的生产力革命。很早以前,人工智能技术就开始应用于游戏制作的过程中,近来基于大语言模型和扩散模型的AIGC技术,更是受到了游戏产业界的欢迎。AIGC技术极大程度地降低了开发成本,缩减了制作周期,提升了游戏质量,甚至为游戏带来了新的交互体验。在新兴的AIGC具体应用方面,人工智能正在被应用于电子游戏开发的许多方面,包括生成新的游戏内容(如地图、角色和场景),驱动游戏中的非玩家角色(NPC),以及改进游戏的图像和声音效果等。游戏人工智能技术的未来发展方向之三,为通用人工智能的孵化给予帮助。经多个复杂游戏训练后的“玩游戏”的人工智能体,将

AI将使任何人都能够创建游戏

原文地址:https://a16z.com/2023/03/17/the-generative-ai-revolution/作者:A16Z分析师随着[游戏中生成式人工智能革命的](https://a16z.com/2022/11/17/the-generative-ai-revolution-in-games/)进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能;相反,创作者只会受到他们的精力、创造力和想象力的限制。想法并不便宜;他们会很珍贵。最重要的是,游戏创作将变得真正民主化,数以百万计的新游戏制作者将被创造出来。想法很便宜。只有你对它们做了什么才重要。——艾萨克·阿西莫夫根据UGC平台的历史、最近面向消费者的法学硕士的可用性以及对先前技术变革的观察,我们相信,从UGC游戏到人工智能驱动的UGC(我们将在下文中称为AIGC)的演变将会发生分两个阶段。

AI将使任何人都能够创建游戏

生成式人工智能将通过使游戏创作民主化来改变和颠覆UGC游戏领域。每个人内心都是游戏玩家,每个游戏玩家都可以成为游戏制作者。AIGC时代将让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。更多的创作者、更多样化的游戏、更多的游戏玩家。如果您是一位创始人,热衷于构建能够解锁新一代创作者的生成式人工智能工具,请随时与我们联系!

Others are asking
请问还有哪些AIGC活动还未到截止日期
以下是一些尚未到截止日期的 AIGC 活动: 2024 上海国际公益广告大赛:截止 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,还有全场大奖 10 万。 首届“海丝之光”AI 青瓷设计大赛:截止 2024 年 11 月 10 日。报名链接:,团队参赛最多 5 人,网络投票+专家评审,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 百万奖金池重磅赛事“2024 AIGC 营销视频生态创新大赛 '真 AI 牛奶,真 AI 创意'”:作品提交时间为 10 月 11 日 11 月 30 日,专家评审时间为 12 月 1 日 12 月 9 日,成果发布时间为 12 月 10 日。 中国神兽复兴计划 AI 创作大赛开启:9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 生成式人工智能(AIGC)网络微短剧、微电影大赛征集评选活动:9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书 10000;二等奖 2 名,奖杯、荣誉证书 8000;三等奖 6 名,奖杯、荣誉证书 3000。 ComfyUI 共学 WaytoAGI 共学计划:8 月 20 23 日每晚 8 点,会议链接:。 全球 AI 视觉创意大赛(瓦卡奖 VACAT):8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。
2025-01-30
请联网搜索近期有什么AIGC相关的比赛活动
以下是近期的 AIGC 相关比赛活动: 【线上⬆️】,时间为 9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 ,时间为 9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书及 10000 元奖励;二等奖 2 名,奖杯、荣誉证书及 8000 元奖励;三等奖 6 名,奖杯、荣誉证书及 3000 元奖励。 【线上⬆️】 。 【线上⬆️】,时间为 8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。 ,截止时间为 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,另外有全场大奖 10 万。 ,截止时间为 2024 年 11 月 10 日。让创意点亮传统,传承经典,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 ,作品提交时间为 10.11 11.30,专家评审时间为 12.1 12.9,成果发布时间为 12.10 。 ,时间为 1 月 24 日 2 月 28 日。需用魔搭平台【AIGC 专区】麦橘超然模型作底模训练 LORA 模型,描绘心中理想世界,风格不限。提交 LoRA 及 6 张以上高质量作品,单张图片分辨率不低于 1024x1024 像素,每组作品展现一个世界观场景;避免鲜血、骷髅等敏感元素。一等奖 1 名,奖金 5000 元 + 证书;二等奖 3 名,奖金 3000 元 + 证书;三等奖 10 名,奖金 1000 元 + 证书。魔搭社区 AIGC 代言人奖:作品发小红书带一丹一世界话题并@魔搭 ModelScope 社区官方,浏览量满 800,前 20 名可得 300 元天猫超市卡。
2025-01-30
AIGC和AGI的区别
AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,包括文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AGI(通用人工智能)则是一种让机器具备像人类一样的通用智能的目标,能够理解、学习和处理各种不同的任务和领域。 AIGC 侧重于内容的生成,是通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。而 AGI 追求的是更广泛和通用的智能能力。 例如,AIGC 可以生成文章、艺术作品、短视频等具体的内容形式;AGI 则是期望机器能够像人类一样进行思考、推理、解决复杂的综合性问题等。 总的来说,AIGC 是 AGI 在内容生成方面的一种具体应用,而 AGI 是更宏观和高远的人工智能发展目标。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 能进行 AIGC 的产品项目和媒介众多。在语言文字类,有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;在语音声音类,有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;在图片美术类,有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了 Midjourney、谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。UGC 是由用户生成的内容,反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用领域广泛,包括但不限于内容创作、广告、媒体等。 例如,在文字生成方面,可使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容;在图像生成方面,可使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等;在视频生成方面,可使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,媒介也多样。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了生成质量很高的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。
2025-01-10
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC 的应用非常广泛,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 在内容生成方面,AIGC 包括文字生成(如使用大型语言模型 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-01-08
查看deepseek v3 技术报告
以下是关于 DeepSeek V3 的相关信息: Andrej Kaparthy 赞扬 Deepseek 的技术报告值得一读。 很多中国人将 DeepSeekV3 视作“国货之光”,它对高性能算力的依赖小,将训练和推理当作一个系统,给出诸多新的技术思路,注重用工程思维高效解决算法和技术问题。 DeepSeek 的创始人梁文锋出生于 1980 年代,来自广东省的一个五线城市,毕业于浙江大学,主修软件工程,本硕,人工智能方向,非常低调。 阅读 DeepSeek V3 的技术报告列出的研发人员名单近 200 人,均为本土 CS,很多核心是清北及大学应届的 CS 硕博,即便核心人员也是毕业 3 5 年 CS 博士,研发人员充分信任不断自我选择,这是中国最像 OpenAI 研发组织分工和氛围的 AI 研究机构。 您可以通过以下链接获取相关技术报告:
2025-01-31
学习AI技术从哪里开始
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 如果您的学习方向偏向技术研究,需要掌握的知识包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用,需要掌握的知识包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-30
deepseek的技术路线是什么样的
DeepSeek 从一开始就选择了与国内诸多大模型新秀不同的技术路线。它走的是全球开源社区路线,分享最直接的模型、研究方法和成果,吸引反馈,再迭代优化,自我进益。开源十分彻底,从模型权重、数据集到预训练方法都悉数公开,高质量的论文也是开源的一部分。 DeepSeek 先后发布了多款开源模型: 1. 2023 年 11 月,发布 DeepSeek Coder 和 DeepSeek LLM,但在计算的效率和可扩展性上遇到挑战。 2. 2024 年 5 月,发布 V2,以混合专家模型(MoE)和多头潜在注意力机制(MLA)技术的结合,大幅降低了模型训练特别是推理的成本,开始引发广泛讨论和推荐。 3. 2024 年 12 月,发布 V3,以 OpenAI、Anthropic 和 Google 百分之一的成本,实现了模型性能超越同类开源模型 Llama 3.1 和 Qwen 2.5,媲美闭源模型 GPT4o 和 Claude 3.5 Sonnet 的成绩,引发轰动,成为世界大语言模型发展的里程碑。 DeepSeek 与 OpenAI 在实现里程碑式跃迁的进程中有以下区别: 1. OpenAI 致力于实现计算资源规模与成本的无限扩张,而 DeepSeek 一直致力用尽可能低成本的计算资源实现更高的效率。 2. OpenAI 花了两年时间达到 GPT3 时刻,而 DeepSeek 用了一年摘得了 V3 的圣杯。 3. OpenAI 在 GPT 路线上一直聚焦在预训练的进步,而 DeepSeek 则是训练与推理并重。 DeepSeek 从隐秘低调到备受关注,以及它从 Coder 到 V3 模型的三次迭代,与 OpenAI 从 GPT1 到 GPT3 的升级节奏和引发的反响非常接近。
2025-01-29
RAG技术是什么
RAG 即检索增强生成(RetrievalAugmented Generation),是一种结合了检索模型和生成模型的技术。 其核心目的是通过某种途径把知识告诉给 AI 大模型,让大模型“知道”我们的私有知识,变得越来越“懂”我们。 在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 一个 RAG 的应用通常包含以下 5 个过程: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 的最常见应用场景是知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 LangChain 是一个用于构建高级语言模型应用程序的框架,它与 RAG 的关系为: 1. LangChain 作为框架,提供了实现 RAG 所必需的工具和组件。 2. RAG 作为技术,可以在 LangChain 框架内得以实施和利用。 3. LangChain 允许开发者通过其模块化组件来构建 RAG 应用程序。 4. LangChain 通过提供现成的链和提示模板,简化了 RAG 应用程序的开发过程。 5. 利用 LangChain 实现 RAG 可以帮助开发者创建更高效、更准确的应用程序,特别是在需要大量外部信息来辅助决策的场景中。 6. LangChain 通过其丰富的 API 和组件库,支持开发者构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。
2025-01-28
我是一家企业服务公司的负责人,我们业务的主要工作是给客户提供品牌策划,搭建新媒体矩阵账号,请问我应该如何学习ai才能运用ai技术提升工作效率
对于您这样的企业服务公司负责人,想要通过学习 AI 技术提升工作效率,可以从以下几个方面入手: 1. 了解 AI 基础知识:包括 AI 的基本概念、原理和应用领域,建立对 AI 的整体认知。 2. 学习自然语言处理(NLP):这对于品牌策划和新媒体矩阵账号的内容创作很有帮助,例如利用 NLP 技术进行文本分析、情感分析等。 3. 掌握 AI 工具:如 ChatGPT 等,学会如何利用这些工具生成创意文案、优化内容。 4. 研究 AI 绘画工具:用于为品牌策划和新媒体账号提供独特的视觉素材。 5. 探索自动化营销工具:借助 AI 实现营销流程的自动化,提高工作效率。 6. 参加相关培训课程:线上或线下的专业 AI 培训,系统学习 AI 知识和应用技巧。 7. 关注行业动态:了解最新的 AI 技术在品牌策划和新媒体领域的应用案例,借鉴他人经验。 8. 实践与实验:在实际工作中尝试应用 AI 技术,不断总结经验,优化工作流程。
2025-01-25
2024年视频换脸技术
2024 年视频换脸技术面临一些挑战和发展趋势: 挑战方面: 可控性和一致性存在挑战,如人脸转动中保持观感不变形、多个生成片段保持人物一致性、遵循生成指令等,目前视频生成的体感仍需改进,需要底层模型的进步。 成本较高,生成一段 5 秒视频的成本最低约为 1 元人民币,限制了 C 端玩法和大规模应用。 发展趋势: 原生多模态成为 AI 架构的主流选择,从 OpenAI 的 GPT4V 到 Anthropic 的 Claude3V 和 xAI 的 Grok1.5V 等,行业正从简单的模态叠加向真正的多模态融合迈进。原生多模态模型采用统一的编码器解码器架构,在预训练阶段完成多模态信息的深度融合,提升了模型的理解能力,实现了模态间的无缝转换和互补增强,能够处理更复杂的任务。 自 2023 年末开始,Runway、Pika、Meta、Google 等不断推出视频生成/编辑工具,2024 年是 AI 视频技术逐渐成熟并开始商用的一年,下半年或 2025 年可能会看到 AI3D 技术的突破。抖音的成功证明音频、视频加入泛社交/娱乐产品会带来质的飞跃,AI 陪聊赛道中视频、音频技术的加入也将带来内容生产和社交方式的质变。
2025-01-24
最喜欢的AI产品,阐述亮点和原因
以下为一些受欢迎的 AI 产品及其亮点和原因: 爱设计 PPT: 亮点:背后有实力强大的团队,技术过硬且对市场需求有敏锐洞察力;成功把握 AI 与 PPT 结合的市场机遇;在国内 AI 生成 PPT 产品中确立市场领先地位。 原因:团队的持续创新推动产品进步,前瞻性的市场洞察和快速执行能力使其成功,产品的优秀品质和用户的高度认可证明其价值。对于经常制作 PPT 的人,能提高效率并保证高质量输出,随着 AI 技术进步,未来有望带来更多惊喜功能和性能提升。 Grammarly、秘塔写作猫: 亮点:利用自然语言处理技术辅助用户进行高质量写作。 原因:Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助。 淘宝拍照搜商品: 亮点:通过图像识别为用户推荐相似商品。 原因:在 AI 技术支持下,用户上传图片后系统能快速推荐类似商品。 小爱同学、Siri: 亮点:为不同需求定制专属语音助手。 原因:小爱同学可控制智能家居、回答问题等,Siri 能进行语音交互和任务处理。 Keep 智能训练计划: 亮点:根据用户数据制定个性化健身方案。 原因:结合用户身体状况和目标生成专属健身方案。 大众点评智能推荐: 亮点:基于用户口味偏好推荐美食。 原因:通过用户评价和偏好数据为用户推荐餐厅和美食。 阿里小蜜等电商客服: 亮点:为企业提供智能客服解决方案。 原因:可自动回答客户问题,处理订单查询等任务。 AI 游戏道具推荐系统: 亮点:根据玩家需求推荐游戏道具。 原因:利用 AI 分析玩家的游戏风格和进度,提供合适道具推荐。 AI 天气预报分时服务: 亮点:提供精准的分时天气预报。 原因:利用 AI 提供每小时的天气预报,方便用户安排出行和活动。 AI 医疗病历分析平台: 亮点:分析医疗病历,辅助诊断。 原因:利用 AI 分析病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 AI 会议发言总结工具: 亮点:自动总结会议发言内容。 原因:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。 AI 书法作品临摹辅助工具: 亮点:帮助书法爱好者进行临摹。 原因:利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2024-12-26
最喜欢的AI产品,阐述亮点和原因
以下为一些受欢迎的 AI 产品及其亮点和原因: 爱设计 PPT: 亮点:背后有实力强大的团队,技术过硬且对市场需求洞察力敏锐;成功把握 AI 与 PPT 结合的市场机遇;在国内 AI 生成 PPT 产品中确立市场领先地位。 原因:团队的持续创新推动产品进步,前瞻性的市场洞察和快速执行能力使其成功,产品的优秀品质和用户的高度认可证明其价值。对于经常制作 PPT 的人,能提高效率并保证高质量输出,随着 AI 技术进步,未来有望带来更多惊喜。 Grammarly、秘塔写作猫: 亮点:利用自然语言处理技术辅助用户进行高质量写作。 原因:Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助,满足用户对优质写作的需求。 淘宝拍照搜商品: 亮点:通过图像识别为用户推荐相似商品。 原因:在电商领域,方便用户快速找到心仪的商品,提升购物体验。 小爱同学、Siri: 亮点:为不同需求定制专属语音助手。 原因:能实现语音交互和任务处理,如控制智能家居、回答问题等,满足多样化的生活需求。 Keep 智能训练计划: 亮点:根据用户数据制定个性化健身方案。 原因:结合用户身体状况和目标生成专属健身计划,帮助用户科学健身。 大众点评智能推荐: 亮点:基于用户口味偏好推荐美食。 原因:通过用户评价和偏好数据为用户推荐餐厅和美食,方便用户选择。 阿里小蜜等电商客服: 亮点:为企业提供智能客服解决方案。 原因:可自动回答客户问题,处理订单查询等任务,提高客服效率。 AI 游戏道具推荐系统: 亮点:根据玩家需求推荐游戏道具。 原因:在游戏中分析玩家风格和进度,提供合适道具,增强游戏体验。 AI 天气预报分时服务: 亮点:提供精准的分时天气预报。 原因:利用 AI 提供每小时的天气预报,方便用户安排出行和活动。 AI 医疗病历分析平台: 亮点:分析医疗病历,辅助诊断。 原因:利用 AI 分析病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 AI 会议发言总结工具: 亮点:自动总结会议发言内容。 原因:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。 AI 书法作品临摹辅助工具: 亮点:帮助书法爱好者进行临摹。 原因:利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2024-12-26
从集团标准化管理、应用赋能、运营定位、迭代提升四个方面展开阐述人工智能赋能连锁药店运营管理的核心竞争力
很抱歉,目前知识库中没有关于从集团标准化管理、应用赋能、运营定位、迭代提升四个方面阐述人工智能赋能连锁药店运营管理核心竞争力的相关内容。但我可以为您提供一个大致的框架思路供您参考: 集团标准化管理方面: 利用人工智能制定统一的药品分类、库存管理和服务流程标准,确保各连锁药店的运营一致性和规范性。 通过智能数据分析,监测各门店对标准的执行情况,及时发现并纠正偏差。 应用赋能方面: 借助人工智能的图像识别技术,实现药品的快速准确盘点和库存监控。 利用智能客服系统,为顾客提供 24 小时不间断的咨询服务,提高服务效率和质量。 运营定位方面: 基于大数据和人工智能算法,分析不同地区、不同消费群体的需求特点,为各连锁药店精准定位目标市场和商品品类。 运用智能营销工具,实现个性化的促销活动推送,提高营销效果和顾客满意度。 迭代提升方面: 利用人工智能收集和分析顾客反馈、市场变化等数据,持续优化运营策略和服务模式。 建立基于人工智能的预测模型,提前洞察市场趋势和顾客需求变化,为连锁药店的发展提供前瞻性指导。 希望以上内容对您有所帮助,您可以根据实际情况进一步细化和完善。
2024-12-24
请阐述对比学习在图像分类和检测中的应用
在计算机视觉中,对比学习在图像分类和检测中有重要应用。 图像分类方面:图像分类是根据图像中的语义信息对不同类别的图像进行区分。对比学习通过让模型学习区分相似和不同的图像样本,从而更好地捕捉图像中的语义特征,提高分类的准确性。 目标检测方面:目标检测需要找出图像或视频中的目标物体,并检测出其位置和大小。对比学习可以帮助模型学习到更具判别性的特征表示,从而更准确地定位和识别目标物体。在多类别目标检测中,对比学习有助于区分不同类别的物体,提高检测的精度和效率。 总之,对比学习为图像分类和检测任务提供了有效的特征学习方法,有助于提升计算机视觉系统的性能。
2024-10-15
你好,请帮我阐述一下最新的AI技术可以帮我做什么
以下是最新的 AI 技术能为您做的一些事情: 1. 大模型(如 GPT、PaLM 等):能够处理和生成自然语言文本,帮助您进行写作、回答问题、翻译等工作。 2. 多模态 AI(如视觉语言模型 CLIP、Stable Diffusion):实现视觉和语言的交互,例如根据语言描述生成图片,或者理解图片内容并用语言描述。 3. 自监督学习(如自监督预训练、对比学习、掩码语言模型等):提高模型的学习效率和效果。 4. 小样本学习(如元学习、一次学习、提示学习等):在数据有限的情况下也能进行有效的学习和预测。 5. 可解释 AI(如模型可解释性、因果推理、符号推理等):让您更好地理解模型的决策过程和结果。 6. 机器人学(如强化学习、运动规划、人机交互等):助力机器人更智能地完成各种任务,如工业生产、服务等。 7. 量子 AI(如量子机器学习、量子神经网络等):为复杂问题的解决提供新的思路和方法。 8. AI 芯片和硬件加速:提升 AI 计算的速度和效率。 在专利审查领域,AI 技术也得到了广泛应用,它可以通过自动化和智能化的手段,帮助专利审查员更高效地处理大量的专利申请、检索相关文献、评估专利性和创新性等任务。 在教育方面,例如小学课堂,AI 技术也有很多应用。如 2020 年的 GPT3 擅长用电脑写文章和做其他很多语言相关的事情,2022 年的 DALLE 可以根据语言描述画出想象中的图画。现在的 AI 还能够写文章、制作视频、创作音乐,还有像聊天机器人这样可以像朋友一样与您交流的 AI,以及能根据文字描述创造全新图片和视频的 AI。
2024-09-19
请你以用户购买一只股票型基金为例,阐述从购买到TA再到APP,如何计算该基金的资产收益流程
很抱歉,目前知识库中没有关于从购买股票型基金到 TA 再到 APP 计算该基金资产收益流程的相关内容。但一般来说,计算股票型基金的资产收益流程大致如下: 首先,在购买股票型基金时,您需要支付申购费用,申购费用通常会从您的申购金额中扣除。申购成功后,您获得的基金份额 = 申购金额÷(1 + 申购费率)÷ 基金单位净值。 在持有基金期间,基金的资产价值会随着基金投资组合中股票的价格波动而变化。基金的单位净值会定期公布,您可以通过基金公司官网、TA 系统或相关 APP 查看。 当您想要赎回基金时,可能需要支付赎回费用。赎回金额 = 基金份额×基金单位净值×(1 赎回费率)。 您的资产收益 = 赎回金额 申购金额。 需要注意的是,不同的基金产品在申购、赎回费率以及计算方式上可能会有所差异,具体应以您所购买的基金产品的相关规定为准。
2024-09-01