直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

transformer

回答

Transformer 的工作流程如下:

  1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“I”映射为一个 512 维的向量。
  2. 位置编码(Positional Encodings):由于 Transformer 没有捕获序列顺序的结构,需给每个词位置加上位置编码,让模型知晓词语的相对位置。
  3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,即多头注意力机制(Multi-Head Attention)捕捉单词间的依赖关系,以及前馈神经网络(Feed-Forward NN)对 attention 的结果进行进一步编码。
  4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。
  5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。
  6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。

Transformer 具有诸多优势,例如可以非常有效地并行化,这意味着只要有合适的硬件,就能训练出非常大的模型。像 GPT-3 这样令人印象深刻的文本生成模型,其写作能力几乎与人类相当,就是在 45TB 的文本数据上训练而成的。Transformer 使神经网络能够更高效地理解和生成语言,通过并行分析散文块,找出值得关注的元素,极大地优化了生成连贯文本以响应提示的过程。最终,同样的技术还可以生成图像甚至视频。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:能通过简单易懂的方法跟我讲一下 transform 的工作流程吗?

[title]问:能通过简单易懂的方法跟我讲一下transform的工作流程吗?当然可以,让我用一个简单的例子来解释一下Transformer的工作流程:假设我们有一个英文句子"I am a student"需要翻译成中文。Transformer的工作方式如下:1.输入嵌入(Input Embeddings)首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如"I"映射为一个512维的向量。2.位置编码(Positional Encodings)因为Transformer没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。3.编码器(Encoder)输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分:a)多头注意力机制(Multi-Head Attention)捕捉单词间的依赖关系。b)前馈神经网络(Feed-Forward NN)对attention的结果进行进一步编码。4.解码器(Decoder)编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。5.输出嵌入(Output Embeddings)解码器最后一层的输出被映射为输出单词概率分布。例如生成单词"我"、"是"等概率。6.生成(Generation)基于概率分布,以贪婪或beam search等解码策略生成完整的输出序列。

解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型

这就是Transformer大显身手的地方。它们是谷歌和多伦多大学的研究人员在2017年开发的,最初设计用于翻译。但与循环神经网络不同,Transformer可以非常有效地并行化。这就意味着,只要有合适的硬件,你就可以训练出一些非常大的模型。有多大呢?非常之巨大!GPT-3是一种特别令人印象深刻的文本生成模型,它的写作能力几乎与人类相当,它是在45TB的文本数据上训练而成,包括几乎所有的公共网络数据。所以,用一句话总结Transformer,一定是这样的:当一个扩展性极佳的模型和一个巨大的数据集邂逅,结果可能会让你大吃一惊。

OpenAI 真正想要什么 | WIRED

[title]OpenAI真正想要什么| WIREDSutskever和其他人鼓励Radford将他的实验扩展到亚马逊评论之外,利用他的洞察力训练神经网络就广泛的主题进行对话或回答问题。然后,好运降临到了OpenAI身上。2017年初,一篇由8位谷歌研究人员合著的研究论文的预印本出现了,但并未引起人们的注意。这篇论文的正式标题是“Attention Is All You Need”,但它后来被称为“Transformer论文”,这样命名既是为了反映这个想法改变游戏规则的性质,也是为了纪念从卡车变形为巨型机器人的玩具。Transformer使神经网络能够更高效地理解和生成语言。他们通过并行分析散文块,找出哪些元素值得关注。这极大地优化了生成连贯文本以响应提示的过程。最终,人们意识到,同样的技术也可以生成图像甚至视频。虽然该论文后来被称为当前AI狂潮的催化剂,可以把它想象成让披头士乐队成为可能的猫王,但在当时,Ilya Sutskever只是少数几个了解这一突破有多么强大的人之一。Brockman说:“当Ilya看到Transformer出现时,才是真正的顿悟时刻。他说,‘这就是我们一直在等待的。’这就是我们的策略——努力解决问题,然后坚信我们或这个领域中的某个人会设法找出缺失的成分。”Radford开始试验Transformer结构。他说:“我在两周内取得的进展超过了过去两年的进展。他逐渐明白,要想最大限度地利用新模型,关键在于扩大规模——在超大规模的数据集上进行训练。这个想法被拉德福德的合作者Rewon Child称为“Big Transformer”。

其他人在问
什么是Transformers
Transformer 是一种注意力模型,也被称为变形金刚模型。它源于 Google 团队在 2017 年发布的一篇名为《Attention Is All You Need》的论文。 语言建模多年来不断发展,在 2015 年注意力机制兴起,Transformers 模型就是基于此。 Transformer 具有以下特点: 基于注意力机制,能更好地捕捉序列中的长程依赖关系。 是一种使用注意力机制的编码器解码器模型,可以利用多元化的优势,同时处理大量数据。 其架构由编码器和解码器组成,编码器对输入序列进行编码并传递给解码器,解码器解码相关任务的表示。 尽管 Transformers 之前的模型能将单词表示为向量,但这些向量不包含上下文,而 Transformer 能解决此问题。 生成式人工智能的力量来自于使用了 Transformers,其核心思想是“自注意力机制”,能让模型在处理一个词或短语时,同时考虑到与它相关的其他词或短语的信息,从而更好地理解语言的上下文,更准确地进行翻译或生成文本。但 Transformers 也可能产生幻觉,即模型生成无意义或语法错误的单词或短语。 通过海量的训练学习,大型的神经网络模型(如 Transformer )中存储了大量知识,可通过文字生成展现。像 ChatGPT 这样基于 Transformer 的模型在闲聊中能表现出更多世界知识和一定推理能力,能更好地理解人类语言含义和上下文,生成更自然流畅的语言表达。Character.ai 也在研发自己类似于 ChatGPT 的预训练大型语言模型。
2024-10-30
transformer原理详解
Transformer 模型的原理主要包括以下几个方面: 1. 自注意力机制(SelfAttention Mechanism):能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络那样逐个位置处理。通过该机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码(Positional Encoding):由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,引入位置编码。位置编码是一种特殊向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到固定向量,帮助模型学习位置信息的表示。 3. 多头注意力机制(MultiHead Attention):通过引入该机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接(Residual Connection)和层归一化(Layer Normalization):在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间引入残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使模型更易训练和优化;层归一化能加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络(Positionwise FeedForward Networks):在每个注意力子层之后,包含位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立计算,提高了模型的并行性和计算效率。 此外,用一个简单的例子解释其工作流程:假设要将英文句子“I am a student”翻译成中文。 1. 输入嵌入(Input Embeddings):首先将每个单词映射为一个向量,即单词嵌入。 2. 位置编码(Positional Encodings):给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,即多头注意力机制捕捉单词间的依赖关系,前馈神经网络对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。
2024-10-18
transformer原理
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络那样逐个位置处理。通过该机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,引入了位置编码。位置编码是一种特殊向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到的固定向量,帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使模型更易训练和优化;层归一化能加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。 内容由 AI 大模型生成,请仔细甄别。类似问题:Transformer 是什么?
2024-10-14
帮我解释一下transformer
Transformer 的工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“ I ”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有能捕获序列顺序的结构,如递归或卷积,所以给每个词位置加上位置编码,让模型知晓词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention),用于捕捉单词间的依赖关系;二是前馈神经网络(FeedForward NN),对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器同样由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成“我”“是”等单词的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。 Transformer 是一个大参数(千亿级别)的回归方程,其底层是 function loss 损失函数。它是在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。回归方程的 Function loss 拟合 A to B mapping 关系,实现数据集的压缩与还原。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC;AGI 指通用人工智能。公众传播一般会混用上述名词,但底层是 Transformer 结构。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。它与 Alpha Go 有差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,有推理能力,但大语言模型在推理这块很弱。Transformer 决定 LLM 是一个生成式模型。
2024-10-12
transformer原理
Transformer 模型的原理主要包括以下几个方面: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,层归一化可以加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。
2024-08-09
最简单易懂的transformer图示
为了方便理解,我会尽量使用非技术术语进行解释,并配上一些图表。 Transformer 是 Google Research 于 2017 年提出的一种神经网络架构,它已经被证明了在自然语言处理 任务中的有效性,并被广泛应用于机器翻译、文本摘要、问答等领域。 Transformer 的基本原理是通过 注意力机制 来学习词与词之间的依赖关系,从而更好地理解句子的语义。 以下是一张简化的 Transformer 架构图: ! 图中主要包含以下几个部分: 编码器 : 编码器由多个相同的编码器层组成,每个编码器层又由两个子层组成: 自注意力层 : 自注意力层负责学习词与词之间的依赖关系。 前馈神经网络层 : 前馈神经网络层负责对每个词进行非线性变换。 解码器 : 解码器由多个相同的解码器层组成,每个解码器层又由三个子层组成: 自注意力层 : 解码器的自注意力层负责学习词与词之间的依赖关系,以及词与编码器输出之间的依赖关系。 编码器解码器注意力层 : 编码器解码器注意力层负责将编码器输出的信息传递给解码器。 前馈神经网络层 : 解码器的前馈神经网络层负责对每个词进行非线性变换。 位置编码 ,因此需要显式地将位置信息编码到输入序列中。 Transformer 的工作流程如下: 1. 将输入序列转换为词嵌入表示。 2. 编码器对输入序列进行编码,并输出编码器输出序列。 3. 解码器以自注意力机制为基础,根据编码器输出序列和之前生成的输出词,预测下一个词。 4. 重复步骤 3,直到生成完整的输出序列。 Transformer 的注意力机制是其核心思想,它使 Transformer 能够捕获长距离依赖关系,从而更好地理解句子的语义。 以下是一张简化的注意力机制示意图: ! 图中主要包含以下几个部分: 查询 : 查询代表要计算注意力的词。 键 : 键代表所有候选词。 值 : 值代表所有候选词的语义信息。 注意力分数 : 注意力分数代表查询词与每个候选词之间的相关程度。 加权值 : 加权值代表每个候选词对查询词的贡献程度。 注意力机制的计算过程如下: 1. 对查询、键和值进行缩放变换。 2. 计算查询与每个键的点积。 3. 对点积进行 softmax 运算,得到注意力分数。 4. 将注意力分数与值相乘,得到加权值。 5. 将所有加权值求和,得到最终的输出。 Transformer 模型的出现是 NLP 领域的一个重大突破,它使 NLP 任务的性能得到了大幅提升。Transformer 模型及其衍生模型已经被广泛应用于各种 NLP 任务,并取得了 stateoftheart 的结果。 希望以上解释能够帮助您理解 Transformer 的基本原理。
2024-04-29