直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

生成式人工智能如何进行评价散文学习成果

回答

评价生成式人工智能在散文学习成果方面,可以从以下几个方面考虑:

  1. 监督学习构建餐厅评价鉴别系统的过程:
    • 获得标签数据(可能需要 1 个月)。
    • 寻找人工智能团队帮助,训练数据上的模型,让人工智能模型学习如何根据输入来输出正负评价(可能需要 3 个月)。
    • 找到云服务来部署和运行模型(可能需要 3 个月)。
  2. 生成式 AI 项目的生命周期:
    • 建立人工智能的过程中,首先评估项目,建立系统/优化系统,内部测试,外部部署与监控。
    • 当内部测试出现问题时,可能要检查系统内的提示词或者提升系统。当外部使用出现问题,需要检查内部评估环节,甚至检查系统内部。
    • 建造人工智能软件是一个高度实验性的过程,需要不断实验操作,尝试,调整再尝试,再调整。
  3. 相关技术概念:
    • 生成式 AI 生成的内容叫做 AIGC。
    • 机器学习包括监督学习、无监督学习、强化学习。
    • 监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。
    • 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。
    • 强化学习从反馈里学习,最大化奖励或最小化损失。
    • 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。
    • Transformer 模型完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。

这些方面的知识和实践经验可以帮助您更全面地评价生成式人工智能在散文学习成果方面的表现。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

学习笔记:Generative AI for Everyone吴恩达

监督学习构建餐厅评价鉴别系统的过程是,1,获得标签数据(可能1个月),2,寻找人工智能团队帮助,训练数据上的模型,让人工智能模型学习如何根据输入来输出正负评价(可能3个月),3,最后找到云服务来部署和运行模型(可能3个月)。提词器建立的AI系统,可能花几小时或几天就可以构建:[heading4]亲自尝试生成式AI代码(可选)[content]在coursera课程里,进行代码运行(蛮简单的,就是Shift+Enter)[heading4]生成式AI项目的生命周期[content]建立人工智能的过程中,首先评估项目,建立系统/优化系统,内部测试,外部部署与监控。当内部测试出现问题时,可能要检查系统内的prompt或者提升系统。当外部使用出现问题,需要检查内部评估环节,甚至检查系统内部。因此,建造人工智能软件是一个高度实验性的过程,也就是需要不断实验操作,尝试,调整再尝试,再调整。Retrieval augmented generation(RAG)——给大模型获取外部数据资料Fine-tune models,让大模型适应个人任务Pretrain models,train LLM from scratch,预训练

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

其他人在问
如何掌握生成式AI
以下是关于掌握生成式 AI 的一些建议: 课程学习: 可以学习台湾大学李宏毅教授的生成式 AI 课程,该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。 通过学习本课程,能够掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 学习内容: 了解什么是生成式 AI,包括其定义、分类,以及与判别式 AI 的区别和应用领域。 学习生成式模型的基本结构、训练方法、评估指标,以及常见模型的优缺点。 掌握生成式对话的基本概念、应用场景、系统架构和关键技术,以及基于生成式模型的对话生成方法。 熟悉预训练语言模型的发展历程、关键技术、优缺点及其在生成式 AI 中的应用。 知晓生成式 AI 面临的挑战和解决方法,以及未来发展趋势和研究方向。 学习资源: 教材:《生成式 AI 导论 2024》,李宏毅。 参考书籍:《深度学习》,伊恩·古德费洛等。 在线课程:李宏毅的生成式 AI 课程。 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法: 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,可以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-12-18
生成式AI
生成式 AI 是一种能够生成新内容的人工智能技术,其生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 生成式 AI 和 AIGC 的关系:Generative AI 是“生成式人工智能”的正式称呼,AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 方面,从 OpenAI 的官网可知,2022 年宣发时称其为一种模型,官网帮助页面称其为一种服务,目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务),且依赖 GPT 系列模型来运转。 在艺术形态方面,以 Midjourney 等工具为代表,通过背后的人工智能模型,用户根据提供的文本描述可生成高度相关和创造性的图像。这种通过文本命令获得图像的方式叫做 Prompting,是一种全新形态的人机交互。其核心机制涉及数据(包括获取世界上万事万物的图像存档、创建特定数据集等)、映射(使用算法识别和提取图片中的关键视觉特征)和扩散(利用学习到的数据和视觉特征创造新的视觉表达形式)。 生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段(从大量现有内容中学习,得到基础模型)和应用阶段(基础模型可生成内容并解决一般性问题,还可使用特定领域新数据集进一步训练以解决特定问题)。 Google Cloud 提供了相关工具,如 Vertex AI(端到端机器学习开发平台)、Generative AI Studio(允许快速制作原型和自定义生成式 AI 模型)、Model Garden(提供 MLOps 工具,用于自动化机器学习管道)。
2024-12-18
免费的生成式 人工智能
以下是为您提供的关于免费的生成式人工智能的相关信息: 免费试用和折扣: 从 12 月 16 日起向奥德赛计划注册用户开放,已筹集超过 75 万美元的免费试用机会,助力开启人工智能电影制作之旅。 图像与视频生成平台: Civitai:是开源生成式人工智能的家园,使命是使工具和资源普及化。提供模型托管、图像/视频生成和模型训练服务,已发展成拥有 650 万月活跃成员的社区。 KLING AI:下一代一站式人工智能创作平台,拥有强大的人工智能图像和视频生成能力,通过提示和图像激发创造力,具有先进的文本理解能力、精细的细节处理和多种风格。提供积分试用套餐和高级功能抢先体验。 Viggle:允许用户通过 3D 视频基础模型 JST 指定角色的动作。创作者、品牌和电影制作人可轻松替换角色、复制动作并将想法变为现实。前 5000 名注册用户可享受 1 个月的 Viggle 专业计划。 Hailuo Video by MiniMax:强大的人工智能驱动的视频生成引擎。从将简单文本转换为生动、专业品质的视频,到将静态图像转换为动态视觉故事。3 天内为用户提供 1000 积分。 Hedra:开创性的视频基础模型公司,正在构建能够实现控制、情感和创造性智能的全栈创作工作室。前 5000 名注册用户可享受 1 个月的 Hedra 基本计划。 生成式人工智能的相关知识: 生成式人工智能是可以产生各种类型内容的人工智能,包括文本、图像、音频和合成数据。 它需要在流程的开始和结束时进行人工参与,人类需向生成模型输入提示才能让其创建内容。 生成式人工智能输出自然语言、图像或音频,而非生成式人工智能输出数字或类别。 生成式人工智能模型使用统计模型预测预期的响应,并根据训练数据的基础结构生成新的内容。 生成式人工智能的力量来自于使用了 Transformers 技术,但也可能产生幻觉。 学习资源: 视频学习地址:https://youtu.be/G2fqAlgmoPo 中文版本推荐:和超正经学术君
2024-12-17
AI大模型和生成式AI是什么关系
AI 大模型和生成式 AI 有着密切的关系。 生成式 AI 是一种能够生成文本、图片、音频、视频等内容形式的技术。生成式 AI 生成的内容被称为 AIGC。 大语言模型(LLM)属于 AI 大模型的一种。对于生成式 AI 来说,其中生成图像的扩散模型不属于大语言模型。对于大语言模型,生成只是其众多处理任务中的一个,例如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不太擅长文本生成。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。 AI 领域还包括人工智能(AI)、机器学习(包括监督学习、无监督学习、强化学习)、深度学习(参照人脑有神经网络和神经元)等相关技术名词。监督学习使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。强化学习从反馈里学习,以最大化奖励或最小化损失,类似训小狗。神经网络可用于监督学习、无监督学习、强化学习。
2024-12-11
如何通过AGI,生成有一定操控能力的风格化、动漫风生成式短视频,如何做,几个步骤
以下是生成有一定操控能力的风格化、动漫风生成式短视频的步骤: 1. 项目规划:确定短视频的主题和目标观众,制定详细的制作计划。 2. 剧本创作:编写故事脚本,设计角色和场景以及创意。可参考相关剧本创作资料,如:https://waytoagi.feishu.cn/wiki/G11fwW8bmiVLe6kYLgYc2iGin6e ;捏剧本 Bot(捏剧本离谱村专用 https://www.coze.cn/store/bot/7367669913697239052?panel=1&bid=6cs144r404016 。 3. 分镜头脚本:根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 4. 资源准备:准备动画制作所需的素材,包括背景、角色和音效。 5. 画面图片制作:利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 6. 视频制作:利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 7. 后期剪辑:添加音效、配音和字幕,进行最终的剪辑和合成。 8. 发布和推广:将完成的动画短片发布到各大平台,并进行推广和宣传。 此外,在实际制作中,还可以参考一些成功案例,如山西文旅宣传片的制作,运用 Defense 及 SD 制作黄河长城等 AI 艺术字;为陕西文旅做的 40 秒黑神话悟空风格 AI 短片,用 SD 结合 Control Lite 处理钟楼等。郑州 AI 文旅片工作流总体分为分镜脚本、单帧图片制作、图片细节修复与生成视频、视频风格化处理、剪辑合成五个步骤。
2024-12-09
如何通过AGI,生成有一定操控能力的风格化、动漫风生成式短视频
目前关于通过 AGI 生成有一定操控能力的风格化、动漫风生成式短视频,以下是一些相关信息: 2024 年内,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。 同时,在 2024 年还会有其他相关进展,如 AI 音频能力长足进展,带感情的 AI 配音基本成熟;“全真 AI 颜值网红”出现,可以稳定输出视频,可以直播带货;游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式;AI 男/女朋友聊天基本成熟,记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈;实时生成的内容开始在社交媒体内容、广告中出现;AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验;AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等;可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功;中国 AI 达到或超过 GPT4 水平,美国出现 GPT5,世界上开始现“主权 AI”;华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚);AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧;AI 立法、伦理讨论仍然大规模落后于技术进展。 2025 2027 年,AI 3D 技术、物理规则成熟,正常人无法区别 AI 生成还是实景拍摄;全真 AI 虚拟人成熟,包含感情的 AI NPC 成熟,开放世界游戏成熟,游戏中几乎无法区别真人和 NPC;AR/VR 技术大规模商用;接近 AGI 的技术出现;人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行;AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源;具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破;“人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉;AI 引发的社会问题开始加重,结构性失业开始出现;AGI 对于地缘政治的影响开始显露。
2024-12-09
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
全球人工智能治理报告
以下是关于全球人工智能治理的相关报告内容: 英国: 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。 AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国: 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 大型实验室努力应对欧洲监管。 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。 欧洲: 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 中国: 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。 持续生产 SOTA 模型,由国家互联网信息办公室监督。 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
2024-12-18
生成式人工智能如何进行检验散文学习成果
生成式人工智能检验散文学习成果可以从以下几个方面进行: 1. 让语言模型(LLM)检查散文中的文本错误,并对长句进行总结。 2. 利用 LLM 进行语义分析,将散文中的信息传递给相关部门。 3. 对于散文的情感分析,可让模型将其进行正负判断,并展示结果。 此外,还需了解一些相关的知识: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词包括: AI 即人工智能。 机器学习包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失)。 深度学习参照人脑有神经网络和神经元,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑方面,2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-13
评价tts合成效果有什么通用标准吗
对 TTS 合成效果的评价主要分为主观评价和客观评价。 主观评价是通过人类对语音进行打分,常见的方法包括平均意见得分(MOS)、众包平均意见得分(CMOS)和 ABX 测试。其中 MOS 评测较为宽泛,可测试语音的不同方面,如自然度 MOS 和相似度 MOS。国际电信联盟将 MOS 评测规范化为 ITUT P.800,其中绝对等级评分(ACR)应用广泛,其根据音频级别给出 1 至 5 分的评价标准,分数越大表示语音质量越好,MOS 大于 4 时音质较好,低于 3 则有较大缺陷。但人类评分结果易受干扰,如音频样本呈现形式、有无上下文等。 客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究较少。客观评价可分为有参考和无参考质量评估,有参考评估方法需要音质优异的参考信号,常见的有 ITUT P.861(MNB)、ITUT P.862(PESQ)、ITUT P.863(POLQA)、STOI 和 BSSEval 等;无参考评估方法不需要参考信号,常见的包括基于信号的 ITUT P.563 和 ANIQUE+、基于参数的 ITUT G.107(EModel),近年来深度学习也应用到无参考质量评估中,如 AutoMOS、QualityNet、NISQA 和 MOSNet 等。 获取平均意见得分时,实验要求获取多样化且数量足够大的音频样本,在具有特定声学特性的设备上进行测评,控制被试遵循同样标准,确保实验环境一致。实验方法有实验室方式和众包两种,实验室方式能稳定保证实验环境,但人力成本高;众包方式易于获得有效评估结果,但无法确保试听条件。
2024-11-20
评价tts合成效果有什么通用标准吗
对 TTS 合成效果的评价主要分为主观评价和客观评价。 主观评价是通过人类对语音进行打分,常见的方法有平均意见得分(MOS)、众包平均意见得分(CMOS)和 ABX 测试。MOS 评测较为灵活,可测试语音的不同方面,如自然度 MOS 和相似度 MOS。国际电信联盟(ITU)将 MOS 评测规范化为 ITUT P.800,其中绝对等级评分(ACR)应用广泛,其根据音频级别给出 1 至 5 分的评价,分数越大表示语音质量越好,MOS 大于 4 时音质较好,低于 3 则有较大缺陷。但人类评分结果受干扰因素多,如音频样本呈现形式、上下文等。 客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究较少。客观评价可分为有参考和无参考质量评估,有参考评估方法需要音质优异的参考信号,常见的有 ITUT P.861(MNB)、ITUT P.862(PESQ)、ITUT P.863(POLQA)、STOI 和 BSSEval 等;无参考评估方法不需要参考信号,常见的包括基于信号的 ITUT P.563 和 ANIQUE+、基于参数的 ITUT G.107(EModel),近年来深度学习也应用到无参考质量评估中,如 AutoMOS、QualityNet、NISQA 和 MOSNet 等。 获取平均意见得分时,实验要求获取多样化且数量足够大的音频样本,在具有特定声学特性的设备上进行,控制被试遵循同样标准,确保实验环境一致。实验方法有实验室方式和众包,实验室方式能控制测试要素,但人力成本高;众包易于获得评估结果,但无法确保试听条件。
2024-11-20
目前评价最高的OA相关的AI应用是?
以下是一些评价较高的与 OA 相关的 AI 应用: BOSS 直聘简历筛选功能:利用自然语言处理和机器学习技术,快速筛选简历,提高招聘效率。 贝壳找房租赁管理功能:通过数据分析和自然语言处理技术,管理房地产租赁业务,提高效率。 腾讯游戏社交平台:借助数据分析和机器学习技术,为玩家提供社交平台,增强游戏体验。 彩云天气 APP:运用数据分析和机器学习技术,提供准确的天气预报预警,保障生命财产安全。 下厨房口味调整功能:使用自然语言处理和数据分析技术,根据用户反馈调整菜谱口味。 英语流利说纠错功能:基于自然语言处理和机器学习技术,帮助语言学习者纠正错误。 豆瓣电影剧情分析工具:利用数据分析和自然语言处理技术,分析电影剧情,提供深度解读。 腾讯文档分类功能:依靠数据分析和机器学习技术,自动分类办公文件,方便管理。 美丽修行定制方案功能:凭借图像识别和数据分析技术,根据用户肤质定制护肤方案。 宝宝树安全座椅推荐:借助数据分析和机器学习技术,为家长推荐合适的儿童安全座椅。 途虎养车保养推荐:通过数据分析和机器学习技术,根据车辆情况推荐保养套餐。 丰巢快递柜管理系统:利用数据分析、物联网技术,优化快递柜使用效率。 智联招聘面试模拟功能:运用自然语言处理和机器学习技术,帮助求职者进行面试模拟。 酷家乐装修设计软件:使用图像生成和机器学习技术,为用户提供装修设计方案。
2024-11-10
生成式人工智能如何进行教学评价
生成式人工智能进行教学评价可以参考以下步骤和方法: 1. 打分维度: 语言的准确性、清晰度和规范性(5 分) 讲授的严密性和逻辑性(5 分) 语言的生动性和趣味性(5 分) 针对学生实际的可接受性和启发性(5 分) 语言的艺术性(5 分) 给出总分(满分 25 分) 2. 评价内容: 学生能否掌握课文中的重点词汇和句式,提高文言文阅读能力。 能否让学生了解阿房宫的历史,理解作者借古讽今的写作。 能否整体感知,把握作者观点(如在第二课时)。 能否涵养济世补天的精神品格。 能否理解文章重要的文言文字词和语法现象。 能否了解杜牧的创作主张与情怀。 3. 评价方式: 可以以第一人称、700 字左右,代入一位和蔼可亲的语文老师角色,针对试讲者的表现给出中肯评价,并提出鼓励和改进建议。改进建议请附带原文句子和具体时间。 对于发言、文章、主观题可根据量规进行评分和反馈。 还可以尝试让 AI 当评委,如通义听悟录音转文字,丢给自编的多个智能体出分数并填结果。例如,分数高的五位,和三位人类评委选出来的前五可能一致,只是排名可能有一位的差异。 需要注意的是,在使用生成式人工智能进行教学评价时,要提供更多关于任务和要求的详细具体上下文信息,以获得更准确和有效的评价结果。
2024-10-13
基于人工智能的课程考核与质量评价研究
很抱歉,目前知识库中没有关于“基于人工智能的课程考核与质量评价研究”的相关内容。但一般来说,进行这样的研究可以从以下几个方面入手:首先,明确研究的目标和范围,例如是针对特定学科的课程还是通用的人工智能课程。其次,确定考核和评价的指标,可能包括学生的理论知识掌握、实践操作能力、创新思维等。然后,考虑采用多样化的考核方式,如考试、项目作业、小组讨论、课堂表现等,并利用人工智能技术进行数据分析,以更准确和全面地评估学生的学习成果和课程质量。同时,还可以研究如何利用人工智能辅助教师进行评价,提高评价的效率和客观性。您可以进一步明确您的研究重点和具体需求,以便我为您提供更有针对性的帮助。
2024-09-12
查阅机器人文献资料,深度分析机器人文献资料,快速掌握机器人领域,评价机器人能力,分析机器人发展的趋势,写一份3OOO字分析报告。
很抱歉,目前知识库中没有关于您所需的机器人领域的详细文献资料及分析内容,无法为您直接生成一份 3000 字的分析报告。但我可以为您提供一些指导和建议,帮助您完成这份报告。 首先,您可以通过学术数据库(如 Web of Science、Scopus 等)、图书馆资源以及专业的机器人研究机构网站来获取相关的文献资料。在查阅文献时,关注权威期刊和知名学者的研究成果。 对于深度分析文献资料,您可以从以下几个方面入手:研究方法、实验数据、结论的可靠性等。同时,注意比较不同研究之间的异同点,找出研究的热点和空白领域。 在掌握机器人领域方面,了解机器人的分类(工业机器人、服务机器人、特种机器人等)、关键技术(传感器技术、控制算法、人工智能融合等)以及应用场景(制造业、医疗、物流等)是很重要的。 评价机器人的能力可以从性能指标(精度、速度、负载能力等)、智能化水平、适应性和可靠性等方面进行。 分析机器人发展的趋势时,考虑技术创新的推动(如新材料、新算法的应用)、市场需求的变化(如老龄化社会对服务机器人的需求增加)以及政策法规的影响等因素。 希望以上建议对您有所帮助,祝您顺利完成分析报告!
2024-09-01