直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

生成式人工智能如何进行评价散文学习成果

回答

评价生成式人工智能在散文学习成果方面,可以从以下几个方面考虑:

  1. 监督学习构建餐厅评价鉴别系统的过程:
    • 获得标签数据(可能需要 1 个月)。
    • 寻找人工智能团队帮助,训练数据上的模型,让人工智能模型学习如何根据输入来输出正负评价(可能需要 3 个月)。
    • 找到云服务来部署和运行模型(可能需要 3 个月)。
  2. 生成式 AI 项目的生命周期:
    • 建立人工智能的过程中,首先评估项目,建立系统/优化系统,内部测试,外部部署与监控。
    • 当内部测试出现问题时,可能要检查系统内的提示词或者提升系统。当外部使用出现问题,需要检查内部评估环节,甚至检查系统内部。
    • 建造人工智能软件是一个高度实验性的过程,需要不断实验操作,尝试,调整再尝试,再调整。
  3. 相关技术概念:
    • 生成式 AI 生成的内容叫做 AIGC。
    • 机器学习包括监督学习、无监督学习、强化学习。
    • 监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。
    • 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。
    • 强化学习从反馈里学习,最大化奖励或最小化损失。
    • 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。
    • Transformer 模型完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。

这些方面的知识和实践经验可以帮助您更全面地评价生成式人工智能在散文学习成果方面的表现。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

学习笔记:Generative AI for Everyone吴恩达

监督学习构建餐厅评价鉴别系统的过程是,1,获得标签数据(可能1个月),2,寻找人工智能团队帮助,训练数据上的模型,让人工智能模型学习如何根据输入来输出正负评价(可能3个月),3,最后找到云服务来部署和运行模型(可能3个月)。提词器建立的AI系统,可能花几小时或几天就可以构建:[heading4]亲自尝试生成式AI代码(可选)[content]在coursera课程里,进行代码运行(蛮简单的,就是Shift+Enter)[heading4]生成式AI项目的生命周期[content]建立人工智能的过程中,首先评估项目,建立系统/优化系统,内部测试,外部部署与监控。当内部测试出现问题时,可能要检查系统内的prompt或者提升系统。当外部使用出现问题,需要检查内部评估环节,甚至检查系统内部。因此,建造人工智能软件是一个高度实验性的过程,也就是需要不断实验操作,尝试,调整再尝试,再调整。Retrieval augmented generation(RAG)——给大模型获取外部数据资料Fine-tune models,让大模型适应个人任务Pretrain models,train LLM from scratch,预训练

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

其他人在问
生成式搜索和知识问答的区别
生成式搜索和知识问答存在以下区别: 生成式搜索: 采用大型语言模型技术,能更好地理解用户自然语言查询的语义,不仅仅是匹配关键词。 可以生成通顺的自然语言回答,而非简单返回网页链接和片段,结果更易于理解和使用。 能够根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 例如 Perplexity 等 AI 搜索引擎,通过收集各种来源的信息给出答案。 但存在训练成本高、可解释性差、潜在偏差和不当内容等问题。 知识问答: 例如 RAG ,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。 原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。 一些知识问答系统能够支持在本地运行。 此外,为您推荐一些 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。 Perplexity:聊天机器人式搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
如何学习生成式人工智能?
以下是学习生成式人工智能的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,台湾大学李宏毅教授的生成式 AI 课程也是很好的学习资源。该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。通过学习本课程,您可以掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。课程的学习内容包括: 1. 什么是生成式 AI:生成式 AI 的定义和分类、生成式 AI 与判别式 AI 的区别、生成式 AI 的应用领域。 2. 生成式模型:生成式模型的基本结构和训练方法、生成式模型的评估指标、常见的生成式模型及其优缺点。 3. 生成式对话:生成式对话的基本概念和应用场景、生成式对话系统的架构和关键技术、基于生成式模型的对话生成方法。 4. 预训练语言模型:预训练语言模型的发展历程和关键技术、预训练语言模型的优缺点、预训练语言模型在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:生成式 AI 面临的挑战和解决方法、生成式 AI 的未来发展趋势和研究方向。 学习资源包括: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法可以根据个人情况进行选择和调整。
2024-11-08
什么是生成式人工智能?
生成式人工智能是一种能够生成新内容的人工智能技术。生成的内容可以是多模式的,包括文本、图像、音频和视频等。它能够在给出提示或请求时,帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。 生成式人工智能通过从大量现有内容(如文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Generative AI 可以应用于广泛的场景,如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 此外,Google Cloud 提供了多种工具,如 Vertex AI 这一端到端机器学习开发平台,帮助开发人员构建、部署和管理机器学习模型。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。
2024-11-08
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
生成式AI和AIGC是什么,有什么区别和联系?
生成式 AI(Generative AI)是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。目前典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 AIGC(人工智能生成内容)指利用生成式 AI 创建的内容,如图像、视频、音频、文本和三维模型。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用。 生成式 AI 和 AIGC 的联系在于:AIGC 实际上是生成式 AI 的应用结果。 区别在于:生成式 AI 侧重于技术本身,强调生成新内容的能力;AIGC 侧重于生成的内容,是生成式 AI 所产生的具体成果。
2024-11-04
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
一个大学生,如果要了解学习通用人工智能,提高其通用人工智能素养,请给出你的建议
以下是给大学生了解学习通用人工智能、提高通用人工智能素养的建议: 1. 从编程语言入手学习: 可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续学习打下基础。 2. 尝试使用 AI 工具和平台: 体验如 ChatGPT、Midjourney 等 AI 生成工具,了解其应用场景。 探索百度的“文心智能体平台”、Coze 智能体平台等面向大学生的平台。 3. 学习 AI 基础知识: 掌握 AI 的基本概念、发展历程。 熟悉主要技术,如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展。 思考 AI 技术对未来社会的影响,培养思考和判断能力。 6. 深入学习数学知识: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 7. 掌握算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 8. 了解评估和调优: 性能评估:学会评估模型性能的方法,如交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 9. 学习神经网络基础: 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-17
典型的通用人工智能应用有哪些
以下是一些典型的通用人工智能应用: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐产品。 搜索和个性化:改善搜索结果和提供个性化体验。 动态定价:根据市场需求调整价格。 聊天机器人:回答客户问题和解决问题。 4. 制造业: 预测性维护:预测机器故障。 质量控制:检测产品缺陷。 供应链管理:优化供应链。 机器人自动化:提高生产效率。 5. 交通运输:暂未提及具体应用。 此外,通用人工智能模型还具有以下特点: 大型生成式人工智能模型可以灵活生成文本、音频、图像或视频等内容,适应各种不同任务。 当通用人工智能模型集成到人工智能系统中,该系统可服务于各种目的。 通用人工智能模型的提供者在人工智能价值链中具有特殊作用和责任,应提供适度的透明度措施和相关文件。
2024-11-17
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前,AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。实现 AGI 是人工智能研究的长期目标,这需要开发出在各种任务和环境中都能够进行推理、学习、理解和适应的 AI 系统。 OpenAI 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是处理人类的自然语言。 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多。
2024-11-17
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
中国人工智能产业研究报告
以下是为您提供的中国人工智能产业相关研究报告: 《中国生成式 AI 行业市场热点月度分析(2024 年 5 月)》:行业移动端渗透率达 12%,月活用户超 4000 万,用户画像以高学历、白领为主。可通过获取。 《中国新一代人工智能科技产业发展报告(2024)》:指出中国人工智能产业正从“极化”向“扩散”发展。报告基于 4311 家 AI 企业的数据分析,展示了中国 AI 产业的创新版图。可通过获取。 《数说安全:2024 安全大模型技术与市场研究报告》:深入探讨了 AIGC 大语言模型在网络安全领域的应用和影响。可通过获取。 《微盟&爱分析:2024 年企业 AI 应用趋势洞察报告》:通过案例分析展示了 AI 技术如何助力企业提升生产力,并预测 AI 将在企业级应用中持续拓展服务边界,同时 AI Agent 将为企业级 AI 应用带来新想象空间。可通过获取。
2024-11-15
生成式人工智能如何进行检验散文学习成果
生成式人工智能检验散文学习成果可以从以下几个方面进行: 1. 让语言模型(LLM)检查散文中的文本错误,并对长句进行总结。 2. 利用 LLM 进行语义分析,将散文中的信息传递给相关部门。 3. 对于散文的情感分析,可让模型将其进行正负判断,并展示结果。 此外,还需了解一些相关的知识: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词包括: AI 即人工智能。 机器学习包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失)。 深度学习参照人脑有神经网络和神经元,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑方面,2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-13
目前评价最高的OA相关的AI应用是?
以下是一些评价较高的与 OA 相关的 AI 应用: BOSS 直聘简历筛选功能:利用自然语言处理和机器学习技术,快速筛选简历,提高招聘效率。 贝壳找房租赁管理功能:通过数据分析和自然语言处理技术,管理房地产租赁业务,提高效率。 腾讯游戏社交平台:借助数据分析和机器学习技术,为玩家提供社交平台,增强游戏体验。 彩云天气 APP:运用数据分析和机器学习技术,提供准确的天气预报预警,保障生命财产安全。 下厨房口味调整功能:使用自然语言处理和数据分析技术,根据用户反馈调整菜谱口味。 英语流利说纠错功能:基于自然语言处理和机器学习技术,帮助语言学习者纠正错误。 豆瓣电影剧情分析工具:利用数据分析和自然语言处理技术,分析电影剧情,提供深度解读。 腾讯文档分类功能:依靠数据分析和机器学习技术,自动分类办公文件,方便管理。 美丽修行定制方案功能:凭借图像识别和数据分析技术,根据用户肤质定制护肤方案。 宝宝树安全座椅推荐:借助数据分析和机器学习技术,为家长推荐合适的儿童安全座椅。 途虎养车保养推荐:通过数据分析和机器学习技术,根据车辆情况推荐保养套餐。 丰巢快递柜管理系统:利用数据分析、物联网技术,优化快递柜使用效率。 智联招聘面试模拟功能:运用自然语言处理和机器学习技术,帮助求职者进行面试模拟。 酷家乐装修设计软件:使用图像生成和机器学习技术,为用户提供装修设计方案。
2024-11-10
生成式人工智能如何进行教学评价
生成式人工智能进行教学评价可以参考以下步骤和方法: 1. 打分维度: 语言的准确性、清晰度和规范性(5 分) 讲授的严密性和逻辑性(5 分) 语言的生动性和趣味性(5 分) 针对学生实际的可接受性和启发性(5 分) 语言的艺术性(5 分) 给出总分(满分 25 分) 2. 评价内容: 学生能否掌握课文中的重点词汇和句式,提高文言文阅读能力。 能否让学生了解阿房宫的历史,理解作者借古讽今的写作。 能否整体感知,把握作者观点(如在第二课时)。 能否涵养济世补天的精神品格。 能否理解文章重要的文言文字词和语法现象。 能否了解杜牧的创作主张与情怀。 3. 评价方式: 可以以第一人称、700 字左右,代入一位和蔼可亲的语文老师角色,针对试讲者的表现给出中肯评价,并提出鼓励和改进建议。改进建议请附带原文句子和具体时间。 对于发言、文章、主观题可根据量规进行评分和反馈。 还可以尝试让 AI 当评委,如通义听悟录音转文字,丢给自编的多个智能体出分数并填结果。例如,分数高的五位,和三位人类评委选出来的前五可能一致,只是排名可能有一位的差异。 需要注意的是,在使用生成式人工智能进行教学评价时,要提供更多关于任务和要求的详细具体上下文信息,以获得更准确和有效的评价结果。
2024-10-13
基于人工智能的课程考核与质量评价研究
很抱歉,目前知识库中没有关于“基于人工智能的课程考核与质量评价研究”的相关内容。但一般来说,进行这样的研究可以从以下几个方面入手:首先,明确研究的目标和范围,例如是针对特定学科的课程还是通用的人工智能课程。其次,确定考核和评价的指标,可能包括学生的理论知识掌握、实践操作能力、创新思维等。然后,考虑采用多样化的考核方式,如考试、项目作业、小组讨论、课堂表现等,并利用人工智能技术进行数据分析,以更准确和全面地评估学生的学习成果和课程质量。同时,还可以研究如何利用人工智能辅助教师进行评价,提高评价的效率和客观性。您可以进一步明确您的研究重点和具体需求,以便我为您提供更有针对性的帮助。
2024-09-12
查阅机器人文献资料,深度分析机器人文献资料,快速掌握机器人领域,评价机器人能力,分析机器人发展的趋势,写一份3OOO字分析报告。
很抱歉,目前知识库中没有关于您所需的机器人领域的详细文献资料及分析内容,无法为您直接生成一份 3000 字的分析报告。但我可以为您提供一些指导和建议,帮助您完成这份报告。 首先,您可以通过学术数据库(如 Web of Science、Scopus 等)、图书馆资源以及专业的机器人研究机构网站来获取相关的文献资料。在查阅文献时,关注权威期刊和知名学者的研究成果。 对于深度分析文献资料,您可以从以下几个方面入手:研究方法、实验数据、结论的可靠性等。同时,注意比较不同研究之间的异同点,找出研究的热点和空白领域。 在掌握机器人领域方面,了解机器人的分类(工业机器人、服务机器人、特种机器人等)、关键技术(传感器技术、控制算法、人工智能融合等)以及应用场景(制造业、医疗、物流等)是很重要的。 评价机器人的能力可以从性能指标(精度、速度、负载能力等)、智能化水平、适应性和可靠性等方面进行。 分析机器人发展的趋势时,考虑技术创新的推动(如新材料、新算法的应用)、市场需求的变化(如老龄化社会对服务机器人的需求增加)以及政策法规的影响等因素。 希望以上建议对您有所帮助,祝您顺利完成分析报告!
2024-09-01
写机器人相关领域,评价机器人能力,分析机器人发展的趋势三千字分析报告
很抱歉,目前知识库中没有关于写机器人相关领域、评价机器人能力以及分析机器人发展趋势的三千字分析报告的内容。但我可以为您提供一个大致的框架和要点,您可以根据这些来创作报告: 一、引言 介绍机器人领域的背景和重要性,阐述撰写本报告的目的。 二、机器人的定义与分类 1. 明确机器人的定义和涵盖范围。 2. 详细分类,如工业机器人、服务机器人、特种机器人等,并分别介绍其特点和应用领域。 三、机器人能力评价 1. 技术能力 运动控制能力,包括精度、速度、稳定性等。 感知能力,如视觉、听觉、触觉等传感器的性能。 决策与规划能力,算法的复杂度和有效性。 2. 功能能力 完成特定任务的效率和质量,例如生产线上的组装、物流中的搬运等。 适应不同环境和任务的灵活性。 3. 交互能力 与人的交互友好程度,包括语言交流、表情识别等。 与其他设备和系统的协同能力。 四、机器人发展的现状 1. 全球范围内机器人的应用情况和市场规模。 2. 不同类型机器人的发展程度和主要成果。 五、机器人发展的趋势 1. 技术创新趋势 人工智能技术在机器人中的深度融合,如深度学习、强化学习等。 新材料和新工艺的应用,提升机器人的性能和可靠性。 2. 应用拓展趋势 从工业领域向更多服务领域的渗透,如医疗、教育、家庭等。 在特殊环境和危险任务中的应用增加。 3. 产业发展趋势 市场竞争格局的变化,新兴企业的崛起和传统巨头的战略调整。 产业链的完善和协同发展。 六、结论 总结机器人能力的关键要点和发展趋势,展望未来的发展前景和可能面临的挑战。 以上内容仅供参考,您可以根据实际需求进一步扩展和深入研究每个部分。
2024-09-01
第一章作业查阅机器人文献资料,深度分析机器人文献资料,快速掌握机器人领域,评价机器人能力,分析机器人发展的趋势。写一份3000字文章
以下是为您生成的关于机器人领域的 3000 字文章: 一、引言 机器人技术作为当今科技领域的重要组成部分,正以惊人的速度发展和变革。对机器人文献资料的深入研究和分析,有助于我们快速掌握这一领域的核心知识,准确评价机器人的能力,并洞察其未来的发展趋势。 二、机器人的定义和背景 (一)定义 机器人是一种能够自动执行任务的机械装置,通常具备感知、决策和行动的能力。 (二)背景 机器人技术的发展可以追溯到古代,但现代机器人的概念始于 20 世纪中叶。随着计算机技术、传感器技术和控制理论的不断进步,机器人的性能和应用范围得到了极大的拓展。 三、机器人的分类和特点 (一)分类 根据不同的标准,机器人可以分为工业机器人、服务机器人、特种机器人等。 (二)特点 机器人具有高精度、高速度、高可靠性、可编程性等特点。 四、机器人的关键技术 (一)感知技术 包括视觉、听觉、触觉等传感器技术,使机器人能够获取周围环境的信息。 (二)决策技术 基于人工智能算法,让机器人能够做出合理的决策。 (三)控制技术 确保机器人的动作准确、稳定和高效。 五、机器人的应用领域 (一)工业制造 在汽车、电子等行业中,机器人能够完成装配、焊接、搬运等重复性工作,提高生产效率和质量。 (二)医疗保健 辅助手术、康复治疗、护理等方面发挥作用。 (三)服务行业 如餐饮、物流、零售等,提供客户服务、货物配送等功能。 (四)军事领域 执行侦察、排爆、作战等危险任务。 六、机器人能力的评价指标 (一)精度和准确性 衡量机器人完成任务的精确程度。 (二)速度和效率 反映机器人的工作效率。 (三)适应性和灵活性 评估机器人在不同环境和任务中的适应能力。 (四)可靠性和稳定性 考察机器人长期运行的稳定性和可靠性。 七、机器人发展的趋势 (一)智能化 融合更多的人工智能技术,使机器人具备更强的自主学习和决策能力。 (二)人机协作 人与机器人更加紧密地合作,共同完成复杂任务。 (三)小型化和轻量化 便于在更多场景中应用。 (四)多模态感知和交互 实现更自然、更丰富的人机交互。 (五)应用领域的拓展 不断渗透到新的行业和领域。 八、结论 机器人技术的发展为人类社会带来了巨大的机遇和挑战。通过对机器人文献资料的深入分析,我们对机器人的定义、分类、关键技术、应用领域、能力评价和发展趋势有了更全面的认识。未来,随着技术的不断进步,机器人将在各个领域发挥更加重要的作用,为人类创造更多的价值。但同时,我们也需要关注机器人发展带来的伦理、法律和社会问题,确保其安全、可靠、有益地服务于人类社会。 以上内容仅供参考,您可以根据实际需求进行调整和完善。
2024-08-30