Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

评价tts合成效果有什么通用标准吗

Answer

对 TTS 合成效果的评价主要分为主观评价和客观评价。

主观评价是通过人类对语音进行打分,常见的方法有平均意见得分(MOS)、众包平均意见得分(CMOS)和 ABX 测试。MOS 评测较为灵活,可测试语音的不同方面,如自然度 MOS 和相似度 MOS。国际电信联盟(ITU)将 MOS 评测规范化为 ITU-T P.800,其中绝对等级评分(ACR)应用广泛,其根据音频级别给出 1 至 5 分的评价,分数越大表示语音质量越好,MOS 大于 4 时音质较好,低于 3 则有较大缺陷。但人类评分结果受干扰因素多,如音频样本呈现形式、上下文等。

客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究较少。客观评价可分为有参考和无参考质量评估,有参考评估方法需要音质优异的参考信号,常见的有 ITU-T P.861(MNB)、ITU-T P.862(PESQ)、ITU-T P.863(POLQA)、STOI 和 BSSEval 等;无参考评估方法不需要参考信号,常见的包括基于信号的 ITU-T P.563 和 ANIQUE+、基于参数的 ITU-T G.107(E-Model),近年来深度学习也应用到无参考质量评估中,如 AutoMOS、QualityNet、NISQA 和 MOSNet 等。

获取平均意见得分时,实验要求获取多样化且数量足够大的音频样本,在具有特定声学特性的设备上进行,控制被试遵循同样标准,确保实验环境一致。实验方法有实验室方式和众包,实验室方式能控制测试要素,但人力成本高;众包易于获得评估结果,但无法确保试听条件。

Content generated by AI large model, please carefully verify (powered by aily)

References

TTS超全教程

对合成语音的质量评价,主要可以分为主观和客观评价。主观评价是通过人类对语音进行打分,比如平均意见得分(Mean Opinion Score,MOS)、众包平均意见得分(CrowdMOS,CMOS)和ABX测试。客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究的比较少,论文中常常通过展示频谱细节,计算梅尔倒谱失真(Mel Cepstral Distortion,MCD)等方法作为客观评价。客观评价还可以分为有参考和无参考质量评估,这两者的主要判别依据在于该方法是否需要标准信号。有参考评估方法除了待评测信号,还需要一个音质优异的,可以认为没有损伤的参考信号。常见的有参考质量评估主要有ITU-T P.861(MNB)、ITU-T P.862(PESQ)、ITU-T P.863(POLQA)、STOI和BSSEval。无参考评估方法则不需要参考信号,直接根据待评估信号,给出质量评分,无参考评估方法还可以分为基于信号、基于参数以及基于深度学习的质量评估方法。常见的基于信号的无参考质量评估包括ITU-T P.563和ANIQUE+,基于参数的方法有ITU-T G.107(E-Model)。近年来,深度学习也逐步应用到无参考质量评估中,如:AutoMOS、QualityNet、NISQA和MOSNet。

TTS超全教程

主观评价中的MOS评测是一种较为宽泛的说法,由于给出评测分数的主体是人类,因此可以灵活测试语音的不同方面。比如在语音合成领域,主要有自然度MOS(MOS of Naturalness)和相似度MOS(MOS of Similarity)。但是人类给出的评分结果受到的干扰因素较多,谷歌对合成语音的主观评估方法进行了比较,在评估较长语音中的单个句子时,音频样本的呈现形式会显著影响参与人员给出的结果。比如仅提供单个句子而不提供上下文,与相同句子给出语境相比,被测人员给出的评分差异显著。国际电信联盟(International Telecommunication Union,ITU)将MOS评测规范化为ITU-T P.800,其中绝对等级评分(Absolute Category Rating,ACR)应用最为广泛,ACR的详细评估标准如下表所示。|音频级别|平均意见得分|评价标准||-|-|-||优|5|很好,听得清楚;延迟小,交流流畅||良|4|稍差,听得清楚;延迟小,交流欠流畅,有点杂音||中|3|还可以,听不太清;有一定延迟,可以交流||差|2|勉强,听不太清;延迟较大,交流需要重复多遍||劣|1|极差,听不懂;延迟大,交流不通畅|在使用ACR方法对语音质量进行评价时,参与评测的人员(简称被试)对语音整体质量进行打分,分值范围为1 5分,分数越大表示语音质量越好。MOS大于4时,可以认为该音质受到大部分被试的认可,音质较好;若MOS低于3,则该语音有比较大的缺陷,大部分被试并不满意该音质。

TTS超全教程

语音合成的最终目标是,合成语音应尽可能接近真实发音,以至于人类无法区分合成和真实语音。因此让人类对合成语音进行评价打分是最为直观的评价方法,评分经处理之后即可获得平均意见得分。平均意见得分是语音合成系统最重要的性能指标之一,能够直接反映合成语音的自然度、清晰度以及可懂度。[heading3]实验要求[content]获取多样化且数量足够大的音频样本,以确保结果在统计上的显著,测评在具有特定声学特性的设备上进行,控制每个被试遵循同样的评估标准,并且确保每个被试的实验环境保持一致。[heading3]实验方法[content]为了达到实验要求,可以通过两种方法获得足够精确的测评结果。第一种是实验室方式,该方式让被试在实验室环境中进行测评,在试听过程中环境噪音必须低于35dB,测试语音数量至少保持30个以上,且覆盖该语种所有音素和音素组合,参与评测的被试应尽可能熟练掌握待测合成语音的语种,最好以合成语音的语种为母语。该方法的优点是测试要素容易控制,能够稳定保证实验环境达到测评要求;缺点则主要是需要被试在固定场所完成试听,人力成本高。第二种是众包,也就是将任务发布到网络上,让具有条件的被试在任何地方进行测评。该方法主要优点是易于获得较为有效的评估结果;而缺点则体现在无法确保试听条件。

Others are asking
适合客户端使用的 tts 模型有什么
以下是一些适合客户端使用的 TTS 模型: 1. Fish Speech:语音处理接近人类水平,约十五万小时三语数据,对中文支持完美。开发者为 fishaudio,具有亿级参数,高效轻量,可在个人设备上运行和微调,适合作为私人语音助手。详细介绍及更多演示:https://xiaohu.ai/p/10779 ,GitHub:https://github.com/fishaudio/fishspeech 。 2. GPTSoVITS:只需 1 分钟语音即可训练一个自己的 TTS 模型,是一个声音克隆和文本到语音转换的开源 Python RAG 框架。5 秒数据就能模仿,1 分钟的声音数据就能训练出高质量的 TTS 模型,完美克隆声音。支持零样本 TTS、少量样本训练、跨语言支持、易于使用的界面等。GitHub: 。
2025-03-17
spark tts
SparkTTS 是基于 Qwen2.5 的高效文本转语音(TTS)系统,具有以下特点: 1. 超越现有 TTS,结合 Qwen2.5 进行端到端生成。 2. 支持细粒度语音控制,包括性别、音调、语速等自定义参数。 3. 具备零样本语音克隆功能,无需目标声音样本,即可生成个性化高质量声音。 4. 采用 BiCodec 编码架构,简化流程,提高推理效率。 5. 与 Qwen2.5 LLM 集成,可直接通过 LLM 处理 TTS 任务,无需额外声学模型。
2025-03-11
tts
语音合成(Text to Speech,TTS)是指将文本通过一系列的信号处理转换成“人造”语音。 技术原理: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后依次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 参考资料: 出门问问的语音合成(TTS)API: 接口请求域名:https://open.mobvoi.com/api/tts/v1 接口请求频率限制:5 次/秒 应用场景:在视频 APP 中作为配音解说;小说 App 完成有声阅读,移动 App 语音播报新闻;智能设备语音提醒;车载导航语音合成的个性化语音播报等。 提供多种方言和风格:包括普通话、台湾腔、粤语、四川话、东北话等多种方言,数百个发音人,上千种风格,满足客户在不同场景的选择需求。实时合成支持 SSML,语法详见 SSML 标记语言。 请求参数: HTTP Method:支持 POST 请求 调用参数及说明: 字段名:text,必填,类型为 String,要合成的文本内容,限制为 1000 字符。支持 ssml 标记语言,使用说明见附录 3。 字段名:appkey,必填,类型为 String,开发者在 AI 开放平台上申请的 appkey。 字段名:signature,必填,类型为 String,签名,通过“appkey+secret+timestamp”进行 md5 加密,得到的 32 位 MD5 值。其中加号也参与 MD5 的计算。每次请求实时计算签名,签名有效期为 10 分钟。 字段名:timestamp,必填,类型为 Long,当前时间戳,单位为秒。 字段名:speaker,否,类型为 String,合成音频指定发音人,默认值:cissy_meet,其他发音人传值及计费价格请参考声音商店。 字段名:audio_type,否,类型为 String,合成音频的格式,默认值:mp3,可选值:pcm/mp3/speexwb10/wav,只支持这四种格式中的一种。 字段名:speed,否,类型为 Float,发音人合成的语速,支持小数点后两位,默认值:1.0,可选值:0.5 2.0。 Request Header 设置
2025-02-28
TTS
语音合成(Text to Speech,TTS)是指将文本通过一系列的信号处理转换成“人造”语音。 技术原理: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后依次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 参考资料: 出门问问的语音合成(TTS)API: 接口描述: 接口请求域名:https://open.mobvoi.com/api/tts/v1 接口请求频率限制:5 次/秒 可以将任意文本转化为语音,应用场景包括视频 APP 配音解说、小说 App 有声阅读、移动 App 语音播报新闻、智能设备语音提醒、车载导航语音合成的个性化语音播报等。提供了普通话、台湾腔、粤语、四川话、东北话等多种方言,数百个发音人,上千种风格。 请求参数: HTTP Method:支持 POST 请求 调用参数及说明: 字段名:text,必填,类型为 String,要合成的文本内容,限制为 1000 字符。支持 ssml 标记语言,使用说明见附录 3。 字段名:appkey,必填,类型为 String,开发者在 AI 开放平台上申请的 appkey。 字段名:signature,必填,类型为 String,签名,通过“appkey+secret+timestamp”进行 md5 加密,得到的 32 位 MD5 值。每次请求实时计算签名,签名有效期为 10 分钟。 字段名:timestamp,必填,类型为 Long,当前时间戳,单位为秒。 字段名:speaker,否,类型为 String,合成音频指定发音人,默认值:cissy_meet,其他发音人传值及计费价格请参考声音商店。 字段名:audio_type,否,类型为 String,合成音频的格式,默认值:mp3,可选值:pcm/mp3/speexwb10/wav,只支持这四种格式中的一种。 字段名:speed,否,类型为 Float,发音人合成的语速,支持小数点后两位,默认值:1.0,可选值:0.5 2.0。 Request Header 设置
2025-02-14
推荐免费的tts公有模型站点,需要支持中文,克隆自己的声音
以下为您推荐支持中文且能克隆自己声音的免费 TTS 公有模型站点: GPTSoVITS: 只需 1 分钟语音即可训练一个自己的 TTS 模型。 5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音,且适配中文,界面易用。 主要特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。模仿出来的声音会更加接近原声,听起来更自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,您可以直接下载使用。 GitHub: 视频教程: 需要注意的是,Stuart 模型存在一些问题: 语音生成基本功能方面: 支持的语音时长不超过 30 秒,超过 30 秒的需要特别修复。 某些 audio seed 在念某些语句时会丢失一些语句。 Refine 过程中有些字会被丢失,比如“儿童节”在大概率会被 refine 成“童节”,丢失一个“儿”字。解决方法是跳过自动 refine,以手动修改文本的方式来控制停顿。 即使同一个 audio seed,如果使用不同的语句分段方式,或者不同的 text seed,生成的音色也不是很稳定,会给人感觉不是同一个人的声音。 代码 Bug: uv_break 等提示词可能会在 refine 之后缺少,甚至有时候在有中括号的情况下也会被念出来。 没提供微调 SFT 的接口。 本模型特别申明:不支持商用,仅用于学术研究。在生成的语音内,作者加了听不见的噪音水印,可以很容易的被检测出来是他的模型生成的语音。ChatTTS 还没放出训练代码无法自己克隆声音,作者还只放出了 4w 小时训练的版本,确保这个模型的声音能被 AI 检测出来。作者还留着一个 10w 小时训练数据的版本。
2025-02-07
推荐免费的tts模型站点,需要支持中文
以下为您推荐两个免费的支持中文的 TTS 模型站点: 1. Fish Speech:语音处理接近人类水平,约十五万小时三语数据,对中文支持完美。开发者为 fishaudio,具有亿级参数,高效轻量,可在个人设备上运行和微调,适合作为私人语音助手。详细介绍及更多演示:https://xiaohu.ai/p/10779 ,GitHub:https://github.com/fishaudio/fishspeech 。 2. GPTSoVITS:只需 1 分钟语音即可训练一个自己的 TTS 模型,是一个声音克隆和文本到语音转换的开源 Python RAG 框架。5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音,完美适配中文。GitHub: 。
2025-02-07
好用的人声合成AI
以下是一些好用的人声合成 AI 相关内容: 1. 关于 AI 孙燕姿的生成: 推荐归臧写的通俗易懂的教程: 《》 《》 项目主要使用 SoVITSSVC 4.0,可在。 模型使用分为原始声音处理、推理过程和音轨合并三个部分。使用 UVR_v5.5.0 软件处理声音,保留人物的干声。运行整合包的 Web UI 进行声音推理,需将模型文件和配置文件放置正确文件夹下。分割后的素材尽量不要超过显存大小,使用【slicergui】软件进行分割。最终得到的处理好的人声素材可用于训练模型。 2. 深度伪造技术: 深度伪造技术(deepfakes)是利用 AI 程序和深度学习算法实现音视频模拟和伪造的技术,投入深度学习的内容库越大,合成的视音频真实性越高,甚至能以假乱真。 粉丝们会通过 Stems 音轨分离工具将人声与原始歌曲分离,再使用人声转换模型将人声转换成另一位明星的风格,然后将新的人声轨道与原始作品重新拼接在一起。DiffSVC 是一种流行的用于此目的的语音传输模型。 3. 制作 AI 古人骂人视频: 声音克隆: 工具:Fish Audio 操作:准备一段需要克隆的音频(可以是类似屈原的古风声音,或自行录制一段),打开网站 https://fish.audio/zhCN/train/newmodel/ ,上传音频,按照指引完成声音克隆,进入声音库选择需要使用的声音,将生成的文案输入,使用克隆好的声音生成对应的音频文件并下载备用。 视频合成: 工具:Viggle.ai 操作:在网上下载“回答我”的原视频,打开 Viggle.ai 网站(https://viggle.ai/createmix ),登录后上传“回答我”原视频和人物形象图生成新版本视频,预览效果并下载。 视频剪辑: 工具:剪映 操作:打开剪映软件(手机或电脑版均可),导入合成好的新视频和生成的音频文件,将音频与视频时间轴对齐,添加字幕等,如需叠加特殊背景,可导入自己的背景图(如楚国风景),预览整个视频,检查效果并微调后导出最终视频。 请注意版权问题,请勿侵犯他人音乐版权。
2025-03-24
免费语音合成API
以下是关于出门问问语音合成(TTS)API 的相关信息: 接口请求域名:https://open.mobvoi.com/api/tts/v1 接口请求频率限制:5 次/秒 调用参数及说明: 字段名:text 必填:是 类型:String 描述:要合成的文本内容,限制为 1000 字符。支持 ssml 标记语言,使用说明见附录 3。 字段名:appkey 必填:是 类型:String 描述:开发者在 AI 开放平台上申请的 appkey。 字段名:signature 必填:是 类型:String 描述:签名,通过“appkey+secret+timestamp”进行 md5 加密,得到的 32 位 MD5 值。其中加号也参与 MD5 的计算。每次请求实时计算签名,签名有效期为 10 分钟。 字段名:timestamp 必填:是 类型:Long 描述:当前时间戳,单位为秒。 字段名:speaker 必填:否 类型:String 描述:合成音频指定发音人。默认值:cissy_meet。其他发音人传值及计费价格请参考声音商店。 字段名:audio_type 必填:否 类型:String 描述:合成音频的格式。默认值:mp3。可选值:pcm/mp3/speexwb10/wav。只支持这四种格式中的一种。 字段名:speed 必填:否 类型:Float 描述:发音人合成的语速,支持小数点后两位。默认值:1.0。可选值:0.5 2.0。 字段名:convert 必填:否 类型:String 描述:默认值:无。可选值:robot。是否转化为机器声。 字段名:rate 必填:否 类型:Long 描述:音频采样率。默认值:无,由 speaker 指定默认值。可选值:8000/16000/24000。 字段名:volume 必填:否 类型:Float 描述:合成音量。默认值:1.0。可选值:0.1 1.0。 字段名:pitch 必填:否 类型:Float 描述:语调参数,参数小于 0 则语调变低,反之则高。默认值:0。可选值:10 < pitch < 10(streaming 接口不支持)。 字段名:symbol_sil 必填:否 类型:String 描述:符号停顿时长映射方法(逗号分割)见下方停顿符号映射表。充值后自动开通权限(streaming 接口不支持)。 字段名:ignore_limit 必填:否 类型:Boolean 描述:默认值:false。可选值:false/true。是否限制字符数,如果设置 true,传输的文本可以超过 1000 字符限制,最大字符数 3000。充值后自动开通权限。 出门问问语音合成技术(TTS)可以将任意文本转化为语音,实现让机器和应用张口说话。其可应用于视频 APP 配音解说、小说 App 有声阅读、移动 App 新闻语音播报、智能设备语音提醒、车载导航语音合成的个性化语音播报等场景。该服务提供了普通话、台湾腔、粤语、四川话、东北话等多种方言,数百个发音人,上千种风格,满足不同场景的选择需求。实时合成支持 SSML,语法详见 SSML 标记语言。 HTTP Method:支持 POST 请求。
2025-03-07
如果我想对一首歌填新歌并合成演唱,用哪个AI工具
如果您想对一首歌填新词并合成演唱,可以使用以下 AI 工具: 1. ACE Studio: 实操步骤: 第一步:准备音频素材。使用干声转换,在软件中分别导入人声干声和伴奏,放在两个轨道上。干声用于转成 MIDI 做 AI 演唱。注意,男歌女唱或女歌男唱时,导入前先进行变调。常用工具如 TME Studio(地址:https://y.qq.com/tme_studio/index.html/editor ),可用于音频分离;Vocalremover(地址:https://vocalremover.org/zh/keybpmfinder ),包含音频分离、变调、BPM 查询等功能。 第二步:干声转换。转换前先将工程 BPM 设置为与歌曲一致,然后将音频轨道的文件拖入到空白的歌手轨道进行干声转换。 第三步:选择歌手。软件左侧有歌手可选择,长按拖动到歌手轨道的头像处即可切换歌手。 2. Suno 和 Udio:推出了上传音频文件生成音乐的功能,有了前置旋律,可以精确控制每首歌的速度、旋律、配器、合成等。可以用提示词多 Roll 一些和流派、心情、场景相关的曲子,把点数用来 roll 更多细节调整的部分,提升作品品质。
2025-03-06
最好的语音合成模型是什么?用于我录入语音,合成我自己的声音。
目前在语音合成领域,有多种优秀的模型。例如: ChatTTS:这是一个用于对话的生成式语音合成模型,生成的语音可以达到“以假乱真”的程度。但为防止被用于违法行为,作者在训练中添加了少量高频噪音并压缩了音质。 MiniMax AI 的 T2A01HD 语音合成模型:仅需 10 秒录音,就能实现高精度的声音克隆。生成的语音在音色、语调和情感表达上达到录音室级别,支持 17 种语言,提供 300 多种预置音色库,并支持多种音效调整。 语音合成包括将文本转换为可听声音信息的过程,一般由文本前端和声学后端两个部分组成。当代工业界主流语音合成系统的声学后端主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。端到端声学后端一般包括声学模型和声码器两部分,同时也出现了直接从音素映射为波形的完全端到端语音合成系统。 您可以根据自己的需求选择适合的语音合成模型。例如,如果您希望快速实现高精度的声音克隆,可以考虑 MiniMax AI 的 T2A01HD 模型;如果您对对话场景的语音合成有需求,ChatTTS 可能是一个不错的选择。
2025-03-06
AI 把logo 合成到图片里
以下是关于将 AI 把 logo 合成到图片里的相关内容: 试运行抠图操作,将抠图结果合到海报上,包括进入画板、添加画板、调整元素等操作。 为锅的海报添加背景及调整图片显示,处理品牌 LOGO 相关操作,如抠图、添加、调整位置和大小。 用 LLM 生成图像提示词,将提示词和 Logo 图片放到 Comfyui 工作流。 整个流程分为获取 Logo 图片的描述、生成图片提示词、将图片和提示词输入 Comfyui 工作生成。
2025-03-03
图片合成
以下是关于图片合成的相关介绍: ComfyUI BrushNet: 这个过程类似于小时候的连点成图游戏,现在由电脑在图片上操作。 1. 掩码:像有洞的纸覆盖在图片上,电脑程序通过洞了解需修复部分。 2. 编码器:是电脑的大脑,把需修复图片转换成能理解和处理的信息。 3. 噪声潜在空间:加入随机性让修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板,帮助完成修复工作。 5. 去噪和生成图像:去除噪声,创建真实图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片和原始图片融合。 Blend叠加: /blend 命令允许快速上传 2 5 张图片,通过对每张图片的概念和美学分析,将它们合并成新图。 与 /imagine 结合多个 。 在输入 /blend 命令后,会提示上传两张照片,可从硬盘拖放或在移动设备从照片库添加。要添加更多图像,选择 optional/options 字段并选 image3、image4 或 image5。 图像叠加默认 1:1 宽高比,可使用可选的 dimensions 字段选择方形(1:1)、肖像(2:3)或横向(3:2)的长宽比。 与其他 /imagine 命令一样,/blend 指令末尾可添加 ,指定在 /blend 命令中的宽高比会覆盖自定义后缀中的宽高比。为获得最佳处理效果,上传与期望结果相同的图像宽高比。
2025-02-10
你如何评价manus和deepseek的事件性?从里程碑的角度来思考!
从里程碑的角度来看,DeepSeek 在处理这个事件时展现出了强大的语言生成和情境构建能力。它能够根据复杂且细致的需求,在思考 8 秒后生成一段富有历史感、情感深度和符合人物性格处境的独白。这段独白不仅考虑到了时间设定、文学修辞的运用,还兼顾了历史事实和人物的心理活动,展现出了较高的智能水平和创作能力。然而,对于 Manus 在这一事件中的作用或表现,由于提供的内容中未提及,无法进行评价。
2025-03-10
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
评价一下deepseek
以下是关于 DeepSeek 的评价: Yann LeCun 强调了开源模型的力量,指出 DeepSeek 的成功得益于开源研究与项目,如 PyTorch 和 Llama。同时批评了对 DeepSeek 成果的过度解读,认为应关注开源对 AI 的促进作用。 华尔街分析师方面,DeepSeek 展示出媲美领先 AI 产品性能的模型,成本仅为一小部分且在全球主要市场的 App Store 登顶。但 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 实际使用体验上,DeepSeek 在文字能力方面表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT(据用户反馈)。GRPO 算法替代传统 PPO,降低了价值函数估计难度,提高了语言评价场景的灵活性与训练速度。
2025-02-17
教培机构怎么创建一个智能体帮我给每一个学生写评价
以下是为教培机构创建一个能为每个学生写评价的智能体的相关指导: 首先,明确评价的维度和标准。可以参考以下几个方面: 1. 语言的准确性、清晰度和规范性,每项 5 分,共 5 分。 2. 讲授的严密性和逻辑性,每项 5 分,共 5 分。 3. 语言的生动性和趣味性,每项 5 分,共 5 分。 4. 针对学生实际的可接受性和启发性,每项 5 分,共 5 分。 5. 语言的艺术性,每项 5 分,共 5 分。 在评价作文方面,需要考虑多个因素,包括:错别字、词、标点识别;好词好句识别、内容评价、逻辑结构评价、语言表达评价、段落评价等。利用大模型高效、准确、丰富知识的优秀特点,对学生作文进行综合打分。 在创建智能体时,要注重以下几点: 1. 让智能体具备深层次语义理解能力,即便处于复杂语境,也能有效辨识出不恰当的词汇和错误的句子构造。 2. 利用大规模数据识别能力,使其能够辨别出哪些词汇或句子搭配在正式书面语中较为罕见,进而准确标出错词错句。 3. 培养智能体基于上下文来判定词语和句子的恰当性,即便是语法正确但语境不适宜的用词也能被有效识别。 4. 让智能体掌握语法规则习得能力,使其能够检测句子是否遵守了语法标准。 同时,写好提示词是创建智能体的第一步。可以参考一些相关的示例,如儿童寓意故事创作者的知识库中的故事,从中学习如何构思和组织语言。 另外,还可以参考之前让 AI 当评委的经验,如通义听悟录音转文字,丢给自编的多个智能体出分数并填结果。结果显示分数高的五位和三位人类评委选出来的前五一致,只是排名有一位的差异。 总之,创建这样的智能体需要综合考虑多方面的因素,并不断优化和改进,以提高评价的准确性和有效性。
2025-02-15
你如何评价字节的coze?
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。其主要特点包括: 1. 多语言模型支持:使用了大型语言模型,如 GPT48K 和 GPT4128K,并提供云雀语言模型等,以支持不同场景下的对话和交互。 2. 插件系统:集成了超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,以扩展 Bot 的能力。 3. 知识库功能:允许用户上传和管理数据,支持 Bot 与用户数据交互,可以上传多种格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 4. 数据库和记忆能力:提供了数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 5. 工作流设计:用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供了大量灵活可组合的节点。 6. 多代理模式:在一个机器人中可以运行多个任务,允许添加多个代理,每个代理都是一个能够独立执行特定任务的智能实体。 7. 免费使用:目前对用户完全免费,用户可以利用其强大的功能而无需支付费用。 8. 易于发布和分享:用户可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多的用户与之互动。 字节对 Coze 的官方解释是:新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。国内版网址:https://www.coze.cn ,官方文档教程:https://www.coze.cn/docs/guides/welcome ,大模型使用的是字节自研的云雀大模型,国内网络即可正常访问。海外版网址:https://www.coze.com ,官方文档教程:https://www.coze.com/docs/guides/welcome ,大模型有 GPT4、GPT3.5 等(可以在这里白嫖 ChatGPT4,具体参考文档),访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html 。 Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。 Dify 和 Coze 都是大模型中间层产品,它们的异同点如下: 开源性:Dify 是开源的,允许开发者自由访问和修改代码,以便进行定制。Coze 目前没有明确信息表明其是否开源,可能更侧重于提供商业化服务和产品。 功能和定制能力:Dify 提供直观界面,结合 AI 工作流、RAG 管道、代理能力和模型管理等功能,支持通过可视化编排,基于任何 LLM 部署 API 和服务。Coze 提供丰富的插件能力和高效的搭建效率,还支持发布到多个平台作为 Bot 能力使用。 社区和支持:Dify 作为开源项目,拥有活跃的社区,开发者可以参与到产品的共创和共建中。Coze 可能更多地依赖于官方的更新和支持,社区参与和开源协作的程度可能不如 Dify。选择使用 Dify 或 Coze 时,开发者和企业需要根据自己的需求和目标来做出决策。
2025-02-10
请简单评价你和deepseek的差距
DeepSeek 与其他相关模型存在多方面的差异和特点: 1. 训练成本方面:DeepSeek 的训练成本远高于传闻,总计约 13 亿美元,且定价低于实际成本,导致高额亏损。 2. 竞争优势方面:以低成本开发顶级 AI 模型的 Mistral AI 被 DeepSeek 迅速赶超,DeepSeek 的“极简算力”模式可能削弱 Mistral 的竞争优势。 3. 发展模式方面:DeepSeek 有点像 2022 年之前的 OpenAI 和 DeepMind,具有非营利性学术研究机构的特点。它没有像很多中国 AI 公司那样注重产品运营、营销和推出各种开发者项目,目前似乎不打算做生意。 4. 技术突破方面:DeepSeek 发布的 V3 以低成本实现了高性能,成为其发展的里程碑。与 OpenAI 相比,DeepSeek 致力于用低成本资源实现高效,达到里程碑的时间更短,且训练与推理并重。
2025-02-08
现在deepseek从普通用户的层面,相比于其他模型,优势有哪些
DeepSeek 对于普通用户的优势包括: 1. 国产之光,在国内被广泛接入和使用。 2. 生成代码的质量可与国外顶尖大模型媲美。 3. 深度思考版本 DeepSeek R1 基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量。其“聪明”源于独特的“教育方式”,率先进入“自学成才”新阶段。 4. 思考与表达能力出色,在思考过程和输出结果的语气、结构、逻辑上表现优秀,碾压其他模型。 然而,DeepSeek 也存在一些不足,例如对于协助编程,其最大的上下文长度只有 64k,较短,导致无法处理更长的上下文和更复杂的代码项目。
2025-03-27
更通用一点,更落地一点,主题换成学习AI&LLM吧
以下是关于学习 AI&LLM 的相关知识: 一、AI 相关概念与技术 1. 概念 生成式 AI 生成的内容称为 AIGC。 AI 即人工智能。 2. 机器学习 电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 3. 深度学习 一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度)。 神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型) 对于生成式 AI,生成图像的扩散模型不是大语言模型。 对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 三、RL 与 LLM 融合的本质与阐释 AI 本质是一堆 scaling law。今天能看到最好的模型规模在 10 的 25 到 26 次方 FLOPs 这种规模,且数量级还会持续增长,算力是必要条件。一个值得被 scale up 的架构是基础,要支持不断加入更多数据。现在“吃”的是 base model 的 scaling law,未来可能会“吃”用户数据源的 scaling law。alignment 也有 scaling law,只要能找到对的数据就能解决。当 next token prediction 足够好时,能够平衡创造性和事实性。多模态数据的引入可推迟数据瓶颈问题,如视频和多模态的卡点解决不了,文本的数据瓶颈就会很关键。在限定问题(如数学或写代码)上,数据相对好生成,通用问题还没有完全的解法,但有探索方向。统计模型没有问题。
2025-03-17
能帮我做一个介绍生成式AI的ppt吗?5页左右即可,介绍一些通用的,用户规模较大的即可,不超过5种。
以下是为您生成的关于生成式 AI 的 5 页 PPT 内容: 幻灯片 1:封面 标题:生成式 AI 简介 幻灯片 2:生成式 AI 的基础模型 大型预训练模型可适应或微调用于多种下游任务,如情感分析、图像字幕和对象识别。 有可能革新医疗、金融和客户服务等行业,检测欺诈并提供个性化支持。 幻灯片 3:在软件开发中的应用 提及 Bard 和生成式人工智能工作室等工具,可用于调试、代码转换和应用构建。 幻灯片 4:PALM API 的会话式人工智能引擎 用户可用自然语言交互。 可创建数字助手、自定义搜索引擎、知识库和培训应用。 能与 Maker Suite 集成,通过图形用户界面访问 API,套件包含模型训练、部署和监控工具。 幻灯片 5:参考资料 All Readings:Introduction to Generative AI Here are the assembled readings on generative AI: 此外,以下是一些常用的 PPT 生成工具(网站): https://zhiwen.xfyun.cn/ 讯飞智文 http://Mindshow.fun Markdown 导入 http://kimi.ai 选 PPT 助手暂时免费效果好 http://Tome.app AI 配图效果好 http://Chatppt.com 自动化程度高 https://wenku.baidu.com 付费效果好 希望以上内容对您有所帮助!
2025-03-11
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
deepseek是不是国内通用大模型第一名
DeepSeek 是在国内表现出色的模型之一。它发布的大一统模型 JanusPro 将图像理解和生成统一在一个模型中,具有统一 Transformer 架构,提供 1B 和 7B 两种规模,全面开源,支持商用,部署使用便捷,Benchmark 表现优异,能力更全面。同时,在 LMSYS 排行榜上,由 DeepSeek 等开发的模型取得了优异成绩,尤其在数学和编程方面表现出色。DeepSeek 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。但不能简单地说 DeepSeek 就是国内通用大模型第一名,其在不同方面的表现还需综合评估。
2025-02-08
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31