生成式人工智能检验散文学习成果可以从以下几个方面进行:
此外,还需了解一些相关的知识:
可以让LLM检查文本错误,总结长句。客服人员针对每一位用户,需要传递大量的信息时,可以内置LLM快速总结信息,提供给决策管理层使用LLM进行语义分析,将邮箱,客户留言等外部信息传递给相关部门如何构建一个可以处理信息的LLM模型呢?设置好的提示词,比如开始可能要求LLM阅读邮件并将邮件分类给相关部门,出现了分配不存在部门的问题。后续只需要优化提示词,提供部门分类。持续的优化propt。另外一个案例是,用于情感分析,将客户留言进行正负判断,并展示于仪表盘。[heading4]聊天[content]聊天机器人可以用于,如做旅游计划,职业咨询,做饭建议。他们不仅仅会生成文本,还可以产生进一步行动,如处理文本后,发送订单信息等为客户提供服务的聊天机器人类型于下图的流程中体现,从完全由人处理,到机械处理后,由人判断,到最后将任务中的退款直接分离并直接处理,困难任务交由人处理。以及机器人完全处理。建立聊天机器人的流程应该是,1,开始于内部聊天机器人,确保良好表现并避免问题,2,设置人为参与链路,3,确保安全后,让机器人对接用户。[heading4]大语言模型行与不行[content]可以做:类似于应届生能做的事不可做:1,时间限制,如GPT-3只有2022年1月前的数据2,会出现幻觉,3,接受有限的prompt,4,输出也有限制,5,不可以很好处理结构化数据。6,可能输出有害的信息
[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。
[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。