Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成式人工智能如何进行检验散文学习成果

Answer

生成式人工智能检验散文学习成果可以从以下几个方面进行:

  1. 让语言模型(LLM)检查散文中的文本错误,并对长句进行总结。
  2. 利用 LLM 进行语义分析,将散文中的信息传递给相关部门。
  3. 对于散文的情感分析,可让模型将其进行正负判断,并展示结果。

此外,还需了解一些相关的知识:

  1. 生成式 AI 生成的内容称为 AIGC。
  2. 相关技术名词包括:
    • AI 即人工智能。
    • 机器学习包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失)。
    • 深度学习参照人脑有神经网络和神经元,神经网络可用于监督学习、无监督学习、强化学习。
    • 生成式 AI 可以生成文本、图片、音频、视频等内容形式。
    • LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。
  3. 技术里程碑方面,2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:Generative AI for Everyone吴恩达

可以让LLM检查文本错误,总结长句。客服人员针对每一位用户,需要传递大量的信息时,可以内置LLM快速总结信息,提供给决策管理层使用LLM进行语义分析,将邮箱,客户留言等外部信息传递给相关部门如何构建一个可以处理信息的LLM模型呢?设置好的提示词,比如开始可能要求LLM阅读邮件并将邮件分类给相关部门,出现了分配不存在部门的问题。后续只需要优化提示词,提供部门分类。持续的优化propt。另外一个案例是,用于情感分析,将客户留言进行正负判断,并展示于仪表盘。[heading4]聊天[content]聊天机器人可以用于,如做旅游计划,职业咨询,做饭建议。他们不仅仅会生成文本,还可以产生进一步行动,如处理文本后,发送订单信息等为客户提供服务的聊天机器人类型于下图的流程中体现,从完全由人处理,到机械处理后,由人判断,到最后将任务中的退款直接分离并直接处理,困难任务交由人处理。以及机器人完全处理。建立聊天机器人的流程应该是,1,开始于内部聊天机器人,确保良好表现并避免问题,2,设置人为参与链路,3,确保安全后,让机器人对接用户。[heading4]大语言模型行与不行[content]可以做:类似于应届生能做的事不可做:1,时间限制,如GPT-3只有2022年1月前的数据2,会出现幻觉,3,接受有限的prompt,4,输出也有限制,5,不可以很好处理结构化数据。6,可能输出有害的信息

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
大模型和小模型区别是什么?是否大模型都属于生成式AI,小模型属于判别式AI,为什么大模型有幻觉小模型没有?
大模型和小模型的区别主要体现在以下几个方面: 1. 规模和参数数量:大模型通常具有更多的参数和更复杂的架构,能够处理更大量和更复杂的数据。 2. 能力和性能:大模型在语言理解、生成等任务上往往表现更出色,能够生成更准确、丰富和连贯的内容。 3. 应用场景:大模型适用于广泛的通用任务,而小模型可能更专注于特定的、较狭窄的领域。 并非大模型都属于生成式 AI,小模型都属于判别式 AI。生成式 AI 能够生成新的内容,如文本、图片等;判别式 AI 则主要用于对输入进行分类或判断。模型的分类与其大小并无直接的必然联系。 大模型出现幻觉的原因主要是其通过训练数据猜测下一个输出结果,可能会因错误或不准确的数据导致给出错误的答案。而小模型相对来说数据量和复杂度较低,出现幻觉的情况相对较少,但这并非绝对,还取决于模型的训练质量、数据的准确性等多种因素。优质的数据集对于大模型减少幻觉现象非常重要。
2025-02-21
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
影视行业的生成式AI工具有哪些?帮我分一下类
以下是影视行业常见的生成式 AI 工具分类: 视频和图像类:Civitai、Kling AI、Viggle、Hailuo、Hedra、RunPod、Higgsfield、ThinkDiffusion、neural frames、Genmo、fal、LTX Video、CogVideoX、Morph Studio、Domo、Haiper、Pony Diffusion、Leonardo AI、Rubbrband 音频类:ElevenLabs、Hailuo、Cartesia、Sync、Tunes by Freepik 3D 类:Playhouse、Playbook、Tripo AI 故事板类:SAGA 在视频大类的分类下,按场景分,主要有以下几类: 1. 纯 AI 视频生成(RunwayML 等为代表) 2. 数字人(Heygen 等) 3. 营销类视频生成及编辑(生成内容以模板化,商业化内容为主) 4. 视频编辑(全面编辑,长剪短等) 此外,全球最大的生成式 AI 视频竞赛之一 Project Odyssey 第二季已开始,相关信息如下: 赛事官网:https://www.projectodyssey.ai/ 注册地址:https://projectodyssey.myflodesk.com/season2 赛事 Discord:https://discord.com/invite/projectodysseyai 提交地址:https://www.projectodyssey.ai/submission 时间线: 12 月 2 日:Project Odyssey 第二季开放报名 12 月 9 日:比赛规则公布 12 月 16 日:报名用户可解锁免费试用、完整规则正式发布、作品提交正式开启 1 月 16 日:提交截止,进入评审阶段 2 月 14 日:直播颁奖 参赛类别: 叙事类:通过鲜明的角色和深刻的故事情节,讲述能够打动人心的故事。 音乐视频:将视觉效果与原创音乐完美结合,打造震撼体验。 品牌创意:构思创意广告或活动视频,为虚拟品牌注入灵魂。(短于 60 秒) 创意预告片:制作极具吸引力的预告片或片头,为电影或剧集呈现特别概念。(短于 2 分 30 秒)
2025-02-16
怎么进入人工智能这个行业
要进入人工智能行业,可以从以下几个方面入手: 1. 学习基础知识:了解人工智能的发展历史、基本概念和原理,包括神经网络、机器学习等。 2. 掌握相关技能:例如编程(如 Python)、数学(如线性代数、概率论)等。 3. 深入研究特定领域:如计算机视觉、自然语言处理等,选择自己感兴趣的方向进行钻研。 4. 实践项目:通过实际参与项目,积累经验和提升能力。 5. 持续学习:人工智能领域发展迅速,要不断跟进最新的技术和研究成果。 人工智能作为一个领域始于二十世纪中叶,最初符号推理流行,后因方法局限性出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在多个领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。
2025-02-20
2024 年中国人工智能+产业规模
目前关于 2024 年中国人工智能+产业规模的相关信息如下: 国家统计局数据显示,2022 年全国研究与试验发展(R&D)经费投入总量首次超过 3 万亿元,达到 30782.9 亿元,比上年增加 2826.6 亿元,增长 10.1%,表明国家对科技创新和算力设施的重视和持续投入。我国算力设施产业链规模巨大,已达到万亿元级别。2022 年我国算力核心产业规模达到 1.8 万亿元,预计到 2023 年,中国算力产业规模将超过 3 万亿元。 在企业数量方面,截至 2024 年 3 月,全国算力存量企业共有 75,343 家。其中,广东省、北京市和江苏省的企业数量位居前三,分别有 10,315 家、7,167 家和 6,728 家。此外,人工智能企业数量也超过 4400 家。 德勤的报告指出,中国 AI 产业快速发展,得益于政策支持、经济增长和技术创新。成长型 AI 企业作为产业创新的重要力量,数量占比高达九成,活跃于各行业领域。预计到 2025 年,中国人工智能核心产业规模将突破 5000 亿元。 在影视行业,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 营销行业或成生成式 AI 最早实现商业化落地的行业之一,未来,AI 技术还将持续推动营销行业的深刻变革。
2025-02-20
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
人工智能时代对社会有什么冲击
人工智能时代对社会的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢,人们不必担心缺乏事情可做。 2. 能力放大:能使人类天生的创造和彼此有用的欲望得到前所未有的放大,社会将重新进入不断扩张的世界。 3. 深度学习:是一种有效的算法,计算能力和数据量越大,解决难题的能力越强,将随着规模而变得更好,对全球人民生活产生有意义的改善。 4. 个人助理:人工智能模型将很快作为自主的个人助理,代表用户执行特定任务。 5. 资源分配:获得充足的计算和能源对于实现人工智能民主化和防止不平等至关重要。 6. 风险控制:控制人工智能的风险对于最大限度地发挥其优势并确保积极的未来至关重要。 同时,在教育方面,孩子将拥有虚拟导师,能够提供个性化教学,类似概念还可应用于医疗保健改进、创建各种软件等领域,带来共享的繁荣。
2025-02-16
什么是人工智能
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机做事。 然而,像“根据照片判断一个人的年龄”这类任务,因无法明确大脑完成此任务的具体步骤,所以难以编写程序让计算机完成,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 能做任何人类可以做的事。 在人工智能术语方面: 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的映射,一般有输入 A 必然输出 B 的软件。 数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2025-02-16
生成式人工智能如何进行评价散文学习成果
评价生成式人工智能在散文学习成果方面,可以从以下几个方面考虑: 1. 监督学习构建餐厅评价鉴别系统的过程: 获得标签数据(可能需要 1 个月)。 寻找人工智能团队帮助,训练数据上的模型,让人工智能模型学习如何根据输入来输出正负评价(可能需要 3 个月)。 找到云服务来部署和运行模型(可能需要 3 个月)。 2. 生成式 AI 项目的生命周期: 建立人工智能的过程中,首先评估项目,建立系统/优化系统,内部测试,外部部署与监控。 当内部测试出现问题时,可能要检查系统内的提示词或者提升系统。当外部使用出现问题,需要检查内部评估环节,甚至检查系统内部。 建造人工智能软件是一个高度实验性的过程,需要不断实验操作,尝试,调整再尝试,再调整。 3. 相关技术概念: 生成式 AI 生成的内容叫做 AIGC。 机器学习包括监督学习、无监督学习、强化学习。 监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 Transformer 模型完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。 这些方面的知识和实践经验可以帮助您更全面地评价生成式人工智能在散文学习成果方面的表现。
2024-10-13