以下是关于 AI 拆书提示词的相关内容:
[title]《PROMPTS FOR AI DANCE MUSIC》Hello and welcome!你好,欢迎光临!Thanks for opening this ebook and your mind to the future ofmusic creation using text.With this book and a creative spirit,letyour imaginations come alive with artistic and specific promptingstrategies.This book is your backstage pass to the party of tomorrow,where words can sketch new songs,inspire new horizons of musicalgenres and render timeless works of sonic wizardry…感谢你打开这本电子书,并将你的心灵敞开,迎接用文字创造音乐的未来。通过这本书和你的创造力,让你的想象力随着艺术和具体的提示策略而活跃起来。这本书是你进入未来派对的后台通行证,在这里,文字可以勾勒出新的歌曲,启发新的音乐风格,并呈现出永恒的声音魔法作品……Think of this as your invite to team up with AI and make more musicthan you’ve ever imagined.We 're talking beats that pulse with life,rhythms that make your soul wanna dance,and melodies that stick withyou like the best kind of earworm.把这本书看作是你与AI合作的邀请,共同创作比你曾经想象的更多的音乐。我们说的是充满生命力的节拍,让你的灵魂想要跳舞的节奏,以及像最佳的耳虫一样萦绕在你心中的旋律。We 've put together this book because we know music isn 't just aboutthe notes; it 's about the vibe,the feeling,and the journey.It 's foryou—the producers,the bedroom DJs,the shower singers turnedsongwriters,and everyone who 's ever felt a beat and thought,"Yeah,Iwanna make that."
[title]用AI做情绪价值营销,你也能写出爆款营销标语,上口又上头他们分别代表了自我认同和社会认同两大需求。自我认同:当人们对自我感觉不甚满意的时候,普遍会生成两大内在动机:一个是自我成长,二是与自我和解。社会认同:人在面对他人或置身群体当中的时候,会需要归属感,希望被对方认可,被群体接纳。同时,人也想要被看见,想要彰显自己的独特性,也就是寻求存在感。于是,我们重点挑选了书中“情绪感知”和“情绪创造”两个章节的相关内容,构建我们的提示词。02.Few shot,担心大模型听不懂人话的杀手锏理论有了逻辑讲了,其实还是担心大模型听不懂、理解不了,关键也没法知道它到底看没看懂,是我提示词不行还是模型能力不行...所以只能想办法多上一些保险,但绝不是提示词越多越好,能力越强的模型越需要精准表达,不过列举few shot通常还是有效做法。于是乎,我们上网一顿搜刮,淘来了一些优秀的情绪营销标语:03.捏提示词,每一次创作都是我们的Aha时刻我们挑选了书中“情绪感知”和“情绪创造”两个章节的精彩观点,加上网上找到的优秀few shot,构建我们的提示词。提示词并未完全使用到书中的全部精华观点,还有提升空间,也欢迎大伙交流讨论:来几个栗子测试一下,多说一句,大模型依然选派Claude3.5 Sonnet,在内容理解和创作这块,绝对的顶流,一时无代餐:📍江小白当年江小白靠营销文案成功出圈,很多文案还记忆深刻,这不就想着拿大模型来PK一下,白酒也是容易跟情感挂上钩的品类,我们简单输入一下初始信息:
OpenAI API可以应用于几乎所有涉及生成自然语言、代码或图像的任务。我们提供了一系列不同能力级别的[模型](https://ywh1bkansf.feishu.cn/wiki/R70MwasSpik2tgkCr7dc9eTmn0o),适用于不同任务的,并且能够[微调(Fine-tune)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf)您自己的自定义模型。这些模型可以用于从内容生成到语义搜索和分类的所有领域。[heading2]提示词Prompts[content]设计提示词本质上就是对模型进行“编程”,这通常是通过提供一些指令或几个示例来完成。这与大多数其他NLP服务不同,后者是为单个任务设计的,例如情绪分类或命名实体识别。相反,补全(Completions)和聊天补全(Chat Completions)几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。[heading2]标记Token[content]我们的模型通过将文本分解为标记(Token)来理解和处理文本。Token可以是单词,也可以是字符块。例如,单词“hamburger”被分解成标记“ham”、“bur”和“ger”,而很短且常见的单词像“pear”是一个Token。许多Token以空格开头,例如“ hello”和“ bye”。在给定的API请求中处理的Token数量取决于您的输入和输出长度。作为一个粗略的经验法则,对于英文文本,1个Token大约相当于4个字符或0.75个单词。要记住的一个限制是,您的文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是2048个Token,或大约1500个单词)。可以查看我们的[分词器工具](https://platform.openai.com/tokenizer)来了解有关文本如何转换为Token的更多信息。