直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

目前市面上有哪些模型

回答

目前市面上的模型主要有以下几种:

  1. Ranger 划分的大模型整体架构中的各层模型:
    • 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。
    • 数据层:包括静态的知识库和动态的三方数据集。
    • 模型层:如 LLm(大语言模型,例如 GPT,一般使用 transformer 算法实现),以及多模态模型(如文生图、图生图等模型,训练所用数据为图文或声音等多模态数据集)。
    • 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。
    • 表现层:即应用层,是用户实际看到的地方。
  2. 智谱·AI 开源的多模态模型:
    • CogAgent-18B:基于 CogVLM-17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 1120*1120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。
    • CogVLM-17B:强大的开源视觉语言模型,在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 state-of-the-art 或者第二名的成绩。
    • Visualglm-6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM-6B,具有 62 亿参数;图像部分通过训练 BLIP2-Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。
    • RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。
  3. OpenAI 的模型:
    • GPT-4 Beta:一组改进 GPT-3.5 的模型,可以理解和生成自然语言或代码。
    • GPT-3.5:一组改进 GPT-3 的模型,可以理解并生成自然语言或代码。
    • DALL·E Beta:可以在给定自然语言提示的情况下生成和编辑图像的模型。
    • Whisper Beta:可以将音频转换为文本的模型。
    • Embeddings:一组可以将文本转换为数字形式的模型。
    • Codex Limited Beta:一组可以理解和生成代码的模型,包括将自然语言转换为代码。
    • Moderation:可以检测文本是否敏感或不安全的微调模型。
    • GPT-3:一组可以理解和生成自然语言的模型。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧

智谱·AI 开源模型列表

[title]智谱·AI开源模型列表[heading2]多模态模型��模态的模型。|模型|介绍|代码链接|模型下载|<br>|-|-|-|-|<br>|CogAgent-18B|基于CogVLM-17B改进的开源视觉语言模型。CogAgent-18B拥有110亿视觉参数和70亿语言参数,支持1120*1120分辨率的图像理解,在CogVLM功能的基础上,具备GUI图像的Agent能力。|[CogVLM & CogAgent](https://github.com/THUDM/CogVLM)|[Huggingface](https://huggingface.co/THUDM/CogVLM)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/cogagent-chat/summary)|[Swanhub](https://swanhub.co/ZhipuAI/cogagent-chat-hf)|始智社区|<br>|CogVLM-17B|强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM可以在不牺牲任何NLP任务性能的情况下,实现视觉语言特征的深度融合。我们训练的CogVLM-17B是目前多模态权威学术榜单上综合成绩第一的模型,在14个数据集上取得了state-of-the-art或者第二名的成绩。||[Huggingface](https://huggingface.co/THUDM/cogvlm-chat-hf)|[魔搭社区](https://modelscope.cn/models/AI-ModelScope/cogvlm-chat/summary)|<br>|Visualglm-6B|VisualGLM-6B是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于[ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B),具有62亿参数;图像部分通过训练[BLIP2-Qformer](https://arxiv.org/abs/2301.12597)构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。|[VisuaGLM](https://github.com/THUDM/VisualGLM-6B)|[Huggingface](https://huggingface.co/THUDM/visualglm-6b)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/visualglm-6b/summary)|<br>|RDM|Relay Diffusion Model:级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。|[RDM](https://github.com/THUDM/RelayDiffusion)||

模型(Models)

[title]模型(Models)[heading2]概述OpenAI API由具有不同功能和价位的多种模型提供支持。您还可以通过[微调(fine-tuning)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf),针对您的特定用例对我们的原始基本模型进行有限的定制。|模型|描述|<br>|-|-|<br>|[GPT-4](https://platform.openai.com/docs/models/gpt-4)Beta|一组改进GPT-3.5的模型,可以理解和生成自然语言或代码|<br>|[GPT-3.5](https://platform.openai.com/docs/models/gpt-3-5)|一组改进GPT-3的模型,可以理解并生成自然语言或代码|<br>|[DALL·E](https://platform.openai.com/docs/models/dall-e)Beta|可以在给定自然语言提示的情况下生成和编辑图像的模型|<br>|[Whisper](https://platform.openai.com/docs/models/whisper)Beta|可以将音频转换为文本的模型|<br>|[Embeddings](https://platform.openai.com/docs/models/embeddings)|一组可以将文本转换为数字形式的模型|<br>|[Codex](https://platform.openai.com/docs/models/codex)Limited Beta|一组可以理解和生成代码的模型,包括将自然语言转换为代码|<br>|[Moderation](https://platform.openai.com/docs/models/moderation)|可以检测文本是否敏感或不安全的微调模型|<br>|[GPT-3](https://platform.openai.com/docs/models/gpt-3)|一组可以理解和生成自然语言的模型|

其他人在问
如何学习AI工具,市面上的AI工具太多了
以下是关于如何学习 AI 工具的一些建议: 1. 明确自身需求:首先要清楚自己使用 AI 工具的目的和场景,例如是用于辅助创作、推荐规划、监控预警、优化管理还是销售交易等。 2. 了解工具特点:虽然底层都是大模型,但 AI 工具各有侧重和优化。例如有的侧重于聊天,有的侧重于绘画、视频或音乐等。 3. 关注工具差异:市场上的 AI 工具存在功能相似、产品同质化严重的问题。要注意区分不同工具的特点和优势,选择适合自己需求的工具。 4. 降低学习成本:良好的用户体验能使用户容易上手,快速理解和使用工具功能。如果觉得学习成本高,可以选择那些用户体验较好的工具。 5. 借助平台服务:由于市场上供应商众多,信息过载,查找和筛选成本高,可以借助更好的平台或者服务,根据自身需求找到适合的 AI 工具。 6. 实践与探索:通过实际操作和尝试不同的 AI 工具,积累经验,加深对工具的理解和掌握。 市面上常见的 AI 应用包括以下几方面: 1. 辅助创作与学习:如 AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。
2024-12-05
AI 写作助手有哪些市面上
以下是市面上常见的 AI 写作助手: 辅助创作与学习方面:AI 智能写作助手帮助用户快速生成高质量文本;AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 文章排版工具方面: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:常用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本,使其更清晰专业。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 营销领域方面: Synthesia:允许创建由 AI 生成的高质量视频,包括数字人视频,可用于营销视频、产品演示等。 HeyGen:基于云的 AI 视频制作平台,可通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 Jasper AI:人工智能写作助手,用于生成营销文案、博客内容、电子邮件等。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总之,这些 AI 工具能够帮助用户高效创作各种内容,提高工作效率。用户可根据实际需求选择合适的工具。需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-05
请告诉我现在市面上推出的宣传了大模型的硬件产品
目前市面上宣传了大模型的硬件产品情况如下: 在手机和 PC 端,华为、荣耀、小米、OPPO、VIVO、三星、联想等厂商都已宣布会在手机/PC 端侧搭载大模型。但目前除了很弱的 Nvidia Chat with RTX,并没有真正全离线版的大模型产品,端上智能暂时还是噱头。手机和电脑厂商们的打法基本都是大模型放在线上,手机和电脑来调用,然后搭配一个小 AI 做总结等服务。 国内方面,硬件层上的卡脖子情况尚未缓解,目前国内仍然没有芯片可以胜任大模型训练。不过在推理上已经开始有 Nvidia 的替代产品逐渐出现。备受瞩目的华为昇腾在单卡指标上距离不远,但因为稳定性不足和缺乏 Cuda(硬件编译库)生态,仍然需要时间打磨。 8 月正式上线的国内大模型涉及的企业机构及相关情况: 五家北京企业机构:百度(文心一言)https://wenxin.baidu.com ;抖音(云雀大模型)https://www.doubao.com ;智谱 AI(GLM 大模型)https://chatglm.cn ;中科院(紫东太初大模型)https://xihe.mindspore.cn ;百川智能(百川大模型)https://www.baichuanai.com/ 三家上海企业机构:商汤(日日新大模型)https://www.sensetime.com/ ;MiniMax(ABAB 大模型)https://api.minimax.chat ;上海人工智能实验室(书生通用大模型)https://internai.org.cn 这些大模型在聊天状态下的特点包括:能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax;目前不能进行自然语言交流的有昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)、书生;受限制使用的有 MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值);特色功能方面,昇思能生图,MiniMax 能语音合成。阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。
2024-11-29
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
可以推薦我市面上最好、CP值最高的三個AI課程嗎?
以下为您推荐野菩萨的 AI 课程,它具有丰富的内容和免费课程机会: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得这门课程,可以来参与 video battle,每期的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 人字头企业,讲究社会责任。无论您是 AI 小白还是深入学习者,这门课程都能给您带来帮助。扫码添加菩萨老师助理,了解更多课程信息。让我们一起在“通往 AGI 之路”社区学习成长,探索 AI 的无限可能。
2024-10-31
我有一个文档字数可能比较多,我希望ai能基于这个文档内容对我的问题进行回答,目前市面上能实现这一功能比较好的工具有哪些?
目前市面上能实现基于文档内容回答问题这一功能较好的工具包括: 1. 飞书:通过企业搜一搜或者自定义问答,智能伙伴可以基于用户有权限的文档内容回答用户提问。 2. Grammarly:不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 3. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 4. Latex:常用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 5. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 6. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 7. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 8. Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 9. Microsoft 365 Copilot:微软推出的整合 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,通过聊天形式完成用户需求。 10. Formula Bot:提供数据分析聊天机器人和公式生成器功能,可自然语言交互进行数据分析和生成 Excel 公式。 11. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成相关文本内容、执行情感分析、语言翻译等任务。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 较受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-10-18
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
目前,有没有能替代My GPT这种功能的外国ai?
目前,在国外有一些能够替代 My GPT 功能的 AI 产品。例如,ChatGPT 是由 OpenAI 开发的知名 AI 助手,它在全球范围内具有广泛的影响力。ChatGPT 具有开创性,是首批向公众开放的大规模商用 AI 对话系统之一,改变了人们对 AI 的认知,为技术发展指明了方向。其界面简洁直观,交互流畅自然,降低了使用门槛。从技术角度看,背后的 GPT 系列模型性能和能力处于行业领先地位。但它也有局限性,且对于国内用户可能存在网络连接等问题。 此外,Google 的 Bard 也是一种选择。在写代码领域,GitHub 的 Copilot 有一些替代品,如 Tabnine、Codeium、Amazon CodeWhisperer、SourceGraph Cody、Tabby、fauxpilot/fauxpilot 等。 Meta 在 2023 年 2 月开源了 LLaMA 1,并在 7 月发布了进阶的 Llama 2 且允许商用,此举推进了大模型的发展。
2024-12-20
目前ai工具排行榜
以下是一些目前常见的 AI 工具排行榜: 1. 创作方面: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 图片处理:DallE、Leonardo、BlueWillow、Midjourney 版权写作:Rytr、Copy AI、Wordtune、Writesonic 设计:Canva、Clipdrop、Designify、Microsoft Designer 网站搭建:10Web、Framer、Hostinger、Landingsite 视频处理:Klap、Opus、Invideo、Heygen 音频处理:Murf、LovoAI、Resemble、Eleven Labs SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope Logo 设计:Looka、LogoAI、Brandmark、Logomaster 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 自动化工具:Make、Zapier、Bardeen、Postman 市场营销 2. 访问量较大的工具: ChatGPT 以 140 亿次访问量领先,占分析流量的 60%以上。 Character AI 排名第二,访问量达到 38 亿次。 QuillBot 访问量达到 11 亿次。 过去一年,人工智能行业平均每月访问量为 20 亿次,过去 6 个月激增至 33 亿次。 分析的 50 个人工智能工具经历了 10.7 倍的增长率,平均每月访问量增加 2.363 亿次。 ChatGPT、Character AI 和 Google Bard 的净流量分别增长了 18 亿次、4.634 亿次和 6800 万次访问量。 Craiyon、MidJourney 和 Quillbot 在此期间面临最大的流量下降。 美国贡献了 55 亿人次访问量,占总访问量的 22.62%,而欧洲国家合计贡献了 39 亿人次访问量。 AI 聊天机器人工具最受欢迎,访问量达到 191 亿次。 超过 63%的 AI 工具用户通过移动设备访问。 性别数据揭示了一种差异:69.5%是男性用户,而 30.5%是女性用户。
2024-12-19
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19
目前最为权威的视频生成 AI 是哪些?
目前较为权威的视频生成 AI 有以下几种: 1. Pika:是出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但需收费。 4. Kaiber:视频转视频 AI,可将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,能生成长达 1 分钟以上的视频。 此外,还有一些具有代表性的海外项目: 1. Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 2. Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,被定位为基础世界模型,可通过单张图像提示生成交互式环境。 Meta 开源了视频生成模型的测试集:Movie Gen Video Bench 和 Audio Bench。Movie Gen Video Bench 是目前规模最大、最全面的视频生成评估基准,包含 1000 多个提示词,涵盖多种概念并有不同运动幅度的测试。Movie Gen Audio Bench 用于评估视频音效生成及视频配音能力。 OpenAI 的相关进展包括:Canvas 新增历史版本对比功能,基于服务端实现,可查看项目历史版本并对比,方便追踪和管理内容变化;发布 gpt4oaudiopreview 模型,支持异步语音交互。 更多的文生视频的网站可以查看: 。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-12-18
Ai目前发展状况如何?有什么发展前景?
目前 AI 的发展状况呈现出以下特点和趋势: 2024 年内: 图片超短视频的精细操控方面,在表情、细致动作、视频文字匹配上有进展。 有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。 AI 音频能力长足进展,带感情的 AI 配音基本成熟。 “全真 AI 颜值网红”出现,可稳定输出视频并直播带货。 游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。 AI 男/女朋友聊天基本成熟,记忆上有明显突破,模拟人的感情能力提升,产品加入视频音频,粘性增强并开始出圈。 实时生成的内容开始在社交媒体内容、广告中出现。 AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。 AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。 可穿戴全天候 AI 硬件层出不穷,但大多数不会成功。 中国 AI 有望达到或超过 GPT4 水平;美国可能出现 GPT5;世界上开始出现“主权 AI”。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧。 AI 立法、伦理讨论仍大规模落后于技术进展。 2025 2027 年: AI 3D 技术、物理规则成熟,正常人难以区别 AI 生成还是实景拍摄。 全真 AI 虚拟人成熟,包含感情的 AI NPC 成熟,开放世界游戏成熟,游戏中几乎无法区别真人和 NPC。 AR/VR 技术大规模商用。 接近 AGI 的技术出现。 人与 AI 配合的工作方式成为常态,很多日常决策由 AI 执行。 AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源。 具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破。 “人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉。 AI 引发的社会问题开始加重,结构性失业开始出现。 AGI 对于地缘政治的影响开始显露。 AI 产品发展的未来展望包括: 更深度的行业整合:AI 技术将更紧密地与各行各业的专业知识和工作流程结合。 用户体验的持续优化:随着技术的成熟,AI 产品的易用性和稳定性将进一步提升。 新兴应用场景的出现:随着 5G、IoT 等技术的普及,AI 可能在智能家居、自动驾驶等领域找到新的突破口。 当前 AI 产品发展的新特点包括: 从通用能力到专业化细分:早期的通用型产品难以满足多样化需求,越来越多的 AI 产品专注于特定领域或功能,如图像生成、视频制作、音频处理等,每个细分领域的产品都在不断提升核心能力。 商业模式的探索与创新:如 ToB 市场的深耕,针对内容创作者的工具;新型广告模式,如天宫搜索的“宝典彩页”等,从单纯的技术展示向解决用户痛点和创造商业价值转变。
2024-12-17