Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Ai目前发展状况如何?有什么发展前景?

Answer

目前 AI 的发展状况呈现出以下特点和趋势:

  • 2024 年内:
    • 图片-超短视频的精细操控方面,在表情、细致动作、视频-文字匹配上有进展。
    • 有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。
    • AI 音频能力长足进展,带感情的 AI 配音基本成熟。
    • “全真 AI 颜值网红”出现,可稳定输出视频并直播带货。
    • 游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。
    • AI 男/女朋友聊天基本成熟,记忆上有明显突破,模拟人的感情能力提升,产品加入视频音频,粘性增强并开始出圈。
    • 实时生成的内容开始在社交媒体内容、广告中出现。
    • AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。
    • AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。
    • 可穿戴-全天候 AI 硬件层出不穷,但大多数不会成功。
    • 中国 AI 有望达到或超过 GPT4 水平;美国可能出现 GPT5;世界上开始出现“主权 AI”。
    • 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。
    • AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧。
    • AI 立法、伦理讨论仍大规模落后于技术进展。
  • 2025 - 2027 年:
    • AI 3D 技术、物理规则成熟,正常人难以区别 AI 生成还是实景拍摄。
    • 全真 AI 虚拟人成熟,包含感情的 AI NPC 成熟,开放世界游戏成熟,游戏中几乎无法区别真人和 NPC。
    • AR/VR 技术大规模商用。
    • 接近 AGI 的技术出现。
    • 人与 AI 配合的工作方式成为常态,很多日常决策由 AI 执行。
    • AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源。
    • 具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破。
    • “人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉。
    • AI 引发的社会问题开始加重,结构性失业开始出现。
    • AGI 对于地缘政治的影响开始显露。

AI 产品发展的未来展望包括:

  • 更深度的行业整合:AI 技术将更紧密地与各行各业的专业知识和工作流程结合。
  • 用户体验的持续优化:随着技术的成熟,AI 产品的易用性和稳定性将进一步提升。
  • 新兴应用场景的出现:随着 5G、IoT 等技术的普及,AI 可能在智能家居、自动驾驶等领域找到新的突破口。

当前 AI 产品发展的新特点包括:

  • 从通用能力到专业化细分:早期的通用型产品难以满足多样化需求,越来越多的 AI 产品专注于特定领域或功能,如图像生成、视频制作、音频处理等,每个细分领域的产品都在不断提升核心能力。
  • 商业模式的探索与创新:如 ToB 市场的深耕,针对内容创作者的工具;新型广告模式,如天宫搜索的“宝典彩页”等,从单纯的技术展示向解决用户痛点和创造商业价值转变。
Content generated by AI large model, please carefully verify (powered by aily)

References

AGI 万字长文(下)| 2024,分叉与洪流

2024年内图片-超短视频的精细操控:表情、细致动作、视频-文字匹配有一定操控能力的生成式短视频:风格化、动漫风最先成熟;真人稍晚AI音频能力长足进展:带感情的AI配音基本成熟“全真AI颜值网红”出现,可以稳定输出视频,可以直播带货游戏AI NPC有里程碑式进展,出现新的游戏生产方式AI男/女朋友聊天基本成熟:记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈实时生成的内容开始在社交媒体内容、广告中出现AI Agent有明确进展,办公场景“AI助手”开始有良好使用体验2AI的商业模式开始有明确用例:数据合成、工程平台、模型安全等可穿戴-全天候AI硬件层出不穷,虽然大多数不会成功中国AI达到或超过GPT4水平;美国出现GPT5;世界上开始现“主权AI”华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚)AI造成的DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧AI立法、伦理讨论仍然大规模落后于技术进展……2025-2027AI 3D技术、物理规则成熟:正常人无法区别AI生成还是实景拍摄全真AI虚拟人成熟:包含感情的AI NPC成熟,开放世界游戏成熟;游戏中几乎无法区别真人和NPCAR/VR技术大规模商用接近AGI的技术出现人与AI配合的工作方式成为常态,很多日常决策开始由AI来执行AI生产的数据量超过全人类生产数据量,“真实”成为稀缺资源具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破“人的模型”出现,出现“集中化AGI”与“个人AGI”的历史分叉AI引发的社会问题开始加重,结构性失业开始出现AGI对于地缘政治的影响开始显露……"Limit of Understanding";Yifei Gong 2024,with Dall-E

2024年AI产品设计和商业化思路的一些变化及讨论

基于当前趋势,我们可以对AI产品的未来发展做出以下预测:更深度的行业整合:AI技术将更紧密地与各行各业的专业知识和工作流程结合。用户体验的持续优化:随着技术的成熟,AI产品的易用性和稳定性将进一步提升。新兴应用场景的出现:随着5G、IoT等技术的普及,AI可能在智能家居、自动驾驶等领域找到新的突破口。讨论内容:samueli:我就简单聊一下,感觉最近也没看到特别好玩的,最近的话就是也是经常写写小红书,所以对这种什么信息获取创作这种工具看的比较多。感觉比较有趣的还是杨哥的那个ReadPo,严格来说的话,它是一个toB的工具,服务各种创作者。顺着这个的话,其实也可以去看了一下。我感觉其实目前的话就是在ai这一块的话大家现在有点陷入一个低潮吧,基本上各种群里面或者大家都在关注的要么就是效率工具,要么就是这种类似于吐槽类的,就比如说前几天那个妙刷火了。这是我自己的一个体感吧,然后可能有点意思,其实它探索了一些商业模式。这一块的话可能对后面的一些AI产品有一些启发吧,另外像这两天天宫的那个搜索的一个更新,我老早就关注了,最近大家也在聊。它里面的宝典彩页,你可以去认领一些主题词搜索的时候给你广告流量,然后变现。我感觉也是商业模式上的一些创新点吧!但是制约因素也挺多的,它首先没流量对我自己就感觉的话就是一个toC的话,要么一些大家都能想到的东西,其实刷刷屏可能很快就过去了。Brad:对,其实我们可以观察一下,最近一段时间AI的产品的发展趋势,跟一年前或者说跟上半年确实有一些不太一样的地方,这一块我们可以展开来聊一下。我先说一下我自己的看法,就除了刚才说的那个情况确实。

2024年AI产品设计和商业化思路的一些变化及讨论

近两年来,人工智能技术,特别是大语言模型(LLM)的快速发展,给科技界和普通用户都带来了巨大冲击。从2022年底ChatGPT的横空出世,到如今各类AI应用的百花齐放,AI产品的发展趋势正在悄然发生变化。本文将从几个关键角度,分析当前AI产品发展的新特点和未来可能的方向。[heading3]从通用能力到专业化细分[content]早期的AI产品,如ChatGPT,以其强大的通用能力吸引了大量用户。然而,随着时间推移,单一的通用型产品已经难以满足用户的多样化需求。目前,我们看到越来越多的AI产品开始专注于特定领域或功能:图像生成:如Midjourney、Stable Diffusion等视频制作:Pika、Runway等音频处理:如各种AI配音、音乐生成工具这种专业化趋势使得每个细分领域的AI产品都在不断提升其核心能力,为用户提供更加精准和高质量的服务。"现在每个单功能的AI产品,只要是现在这个节点出来的都很牛逼。"[heading3]商业模式的探索与创新[content]随着AI技术的成熟,如何将技术转化为可持续的商业模式成为了关键问题。一些创新性的尝试正在涌现:ToB市场的深耕:如针对内容创作者的ReadPo,为专业用户提供高效的信息获取和创作工具。新型广告模式:如天宫搜索的"宝典彩页",允许用户认领特定主题词,获得相关搜索流量并实现变现。这些探索表明,AI产品正在从单纯的技术展示向真正解决用户痛点和创造商业价值的方向转变。

Others are asking
请问有没有可以读学术论文的AI
以下是一些可以辅助阅读学术论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您的医学课题需要 AI 给出修改意见,可以考虑以下工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,增强对科学文献的洞察。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 在 2023 年 12 月 28 日的历史更新中,在“激发学习动力”板块新增了“Connected Papers”网站,可通过可视化图表浏览学术论文。在中国 AI 网站中新增了“彩云小梦”,是一个帮您续写故事的 AI 产品。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-20
现在市场的中的AI大模型都有哪些,各自有什么特点
目前市场中的部分 AI 大模型及特点如下: 北京企业机构: 百度:文心一言,网址:https://wenxin.baidu.com 抖音:云雀大模型,网址:https://www.doubao.com 智谱 AI:GLM 大模型,网址:https://chatglm.cn 中科院:紫东太初大模型,网址:https://xihe.mindspore.cn 百川智能:百川大模型,网址:https://www.baichuanai.com/ 上海企业机构: 商汤:日日新大模型,网址:https://www.sensetime.com/ MiniMax:ABAB 大模型,网址:https://api.minimax.chat 上海人工智能实验室:书生通用大模型,网址:https://internai.org.cn 这些大模型在聊天状态下具有不同特点: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 目前不能进行自然语言交流的:昇思、书生 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 特色功能:昇思——生图,MiniMax——语音合成 此外,阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 中国大模型面临的真实问题包括: 原创大模型:稀少而珍贵,需要强大技术积累和持续高投入,风险大,一旦竞争力不足,投入可能付诸东流。 套壳开源大模型:务实的发展路径,需在借鉴中实现突破创新。 拼装大模型:将小模型拼接,试图整合资源实现飞跃,但整体性能并非简单相加。 在 AI 市场与 AI 产品经理方面: AI 创业市场:一方面行业大佬认为是比移动互联网更大的红利;另一方面观点有碰撞。当前 OpenAI 虽估值高但未盈利,大模型创业可能成泡沫,但 AI 应用不会。小参数大模型盛行,利于开发者。2024 下半年会有一批有代表性的 AI 应用出现。 对于 agent 智能体,个人看好在社交和游戏中的应用。
2025-01-20
找一个可以设计复杂代码的AI
以下是一些可以设计复杂代码的 AI 工具及相关信息: 1. 在独立游戏开发中,如果让 AI 写小功能,可把不方便配表而又需要撰写的简单、模板化、多是调用 API 且只牵涉小部分特殊逻辑的代码交给 AI。以 Buff 系统为例,用 Cursor 让它仿照代码写一些 Buff,生成结果有时可以直接用,但目前 Cursor 生成复杂代码还需要复杂的前期调教,用多了之后 ChatGPT 会更方便。教 AI 时要像哄小孩,有正确的需要及时肯定,指出错误时要克制。 2. OpenAI o1:推理能力强,适合作为架构师或算法顾问,用于复杂算法与架构设计。 3. Claude 3.5/Cursor:Claude 擅长长上下文任务,Cursor 适合上下文控制较好的 IDE 开发,可快速生成代码与网页设计。 4. v0.dev:是网页设计的利器,支持设计稿生成网页。 5. Gemini:长上下文支持(2M Tokens),适合代码反编译与混淆代码分析。 同时需要注意,AI 目前在完成复杂项目方面存在一些限制,如上下文窗口限制、自然语言描述不精确、无法感知环境和直接执行、幻觉问题等。复杂项目需要全局理解,AI 难以设计架构和模块化,项目需求常需反复讨论才能明确,AI 难以完全掌握,编译、部署、调试等复杂任务 AI 难以独立完成,且 AI 可能编造不存在的 API 或错误代码,需人工严格审查。
2025-01-20
有没有可以生成连贯电影分镜的AI工具
以下是一些可以生成连贯电影分镜的 AI 工具: 1. OpenAI 发布的文生视频模型 Sora,能够根据文字指令创造出逼真且充满想象力的场景,生成长达 1 分钟的一镜到底超长视频,视频中的人物和背景具有惊人的一致性,可随意切换镜头并保持人物稳定性。 2. XiaoHu.AI 日报中提到的工具,支持生成多张连贯图像,保持角色或场景的一致性,可用于影视分镜等多种应用。仅需一块 24GB 显存的 GPU 即可完成训练,适配多种模型架构。详细介绍:
2025-01-20
有没有可以生成电影分镜的AI工具
以下是一些可以生成电影分镜的 AI 工具及相关信息: 1. GPT:可以通过指令逻辑生成视频内容、分镜需要的画面、宣传片朋友圈宣传文案等。比如先让 GPT 生成视频内容,再细化每个分镜需要的内容,最后提炼响亮的名字。 2. Pika Labs:在确定画面后可用于生成相关内容。 3. Midjourney:在生图方面,其语义理解有所提升。可以通过确定影片风格(如皮克斯动画风格)、人物形象等来生成图像。 此外,在利用 AI 拆分镜时,如使用 GPT 生成分镜内容,其优势在于结构化,但可能会有内容丢失,需要人工审核及查缺补漏。同时,在制作分镜时,还应考虑视角等细致的问题。
2025-01-20
近6个月ai有什么较大的突破
在近 6 个月,AI 有以下较大的突破: 1. 在人工智能行业,过去 12 个月里流量增长显著。从 2022 年 9 月到 2023 年 8 月,研究的工具访问量从 2.418 亿次增长到 28 亿次,增长了 10.7 倍。其中,最近 6 个月每月平均流量为 33 亿。这一飞跃从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台开始,2023 年 5 月达到峰值约 41 亿。 2. 在医疗保健领域,尽管像 ChatGPT 等产品反映的技术突破显著,但也强调了其不足。例如 GPT4 在美国医学执照考试中超过及格分数 20 分,但在各方面表现并非都出色。 3. 企业对生成式 AI 的资源配置和态度发生显著变化。过去几个月,企业对生成式 AI 的预算几乎增加两倍,更多应用部署在较小的开源模型上,更多业务从早期实验转移到生产环境中。
2025-01-20
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限性出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理,还将帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展机遇,也带来复杂高风险挑战,但潜在正面影响巨大,未来将实现巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。后来,计算资源更便宜、数据更多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现能有效学习任何数据分布,计算能力和数据量越大,解决难题的能力越强。未来,人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展和高风险挑战,但潜在正面影响巨大,未来将带来巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限性出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。它将帮助构建更好的下一代系统,在各领域取得科学进展。 从产业角度,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总的来说,智能时代的曙光带来了历史性发展机遇,也带来复杂高风险挑战,但潜在正面影响巨大,未来将实现巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。近年来我国人工智能产业快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展和复杂高风险挑战,但潜在正面影响巨大,未来将带来巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。后来,随着计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。它还将帮助构建更好的下一代系统,在各领域取得科学进展。 从产业角度,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,需完善产业标准体系。 总之,智能时代的曙光带来了历史性的发展机遇,也带来高风险挑战,但潜在的正面影响巨大,未来会非常光明灿烂。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,但因方法局限出现“人工智能寒冬”。后来,随着计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。系统将帮助构建更好下一代系统,并在各领域取得科学进展。 从产业发展现状看,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。近年来我国人工智能产业在多方面快速发展,形成庞大市场规模,伴随新技术迭代呈现出新特点,亟需完善产业标准体系。 技术将人类从石器时代带到农业、工业时代,通往智能时代的道路由计算、能源和人类意志铺就。降低计算成本、普及人工智能至关重要,否则可能导致资源受限和战争。智能时代虽带来复杂高风险挑战,但潜在正面影响巨大,未来将有巨大繁荣,如修复气候、建立太空殖民地、发现物理学等。
2024-09-30
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14
Ai技术现在的发展状况
AI 技术的发展状况如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 需要注意的是,无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-11-09
目前ai搜索功能最强的是什么模型
目前在 AI 搜索功能方面,Meta 于 2024 年 7 月 23 日发布的源模型 Llama 3.1 表现较为出色,其包含 8B、70B 和 405B 三个版本,其中 405B 是迄今为止最强大的模型,性能与 GPT4 和 Claude 3.5 相当。 在 AI 时代,搜索引擎结合大模型极大地增强了自身能力,比较优秀的公司有秘塔搜索(https://metaso.cn/)和 Perplexity(https://www.perplexity.ai/?loginsource=oneTapHome)。 AI 搜索结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容,一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 RAG 是一种通过引用外部数据源为模型做数据补充的方式,适用于动态知识更新需求高的任务,其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时,且能够支持在本地运行。 多模态大模型具有多种能力,像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。生成式模型和决策式模型有所区别,决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2025-01-19
目前最好用的辅助科研AI工具
以下是一些目前较好用的辅助科研的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 对于医学课题需要 AI 给出修改意见,您可以考虑以下工具: 1. Scite.ai:创新平台,增强对科学文献的洞察,提供引用声明搜索等工具。 2. Scholarcy:可提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,能提供修改意见和帮助。 在帮助学生做好组会准备方面,Claude 和 Gamma.app 是不错的选择。Claude 可帮助快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。例如,通过与 Claude 对话,可以解决学术网站条件搜索的问题,还能让其完成论文摘要、筛选论文等任务。
2025-01-19
目前写直播脚本的AI工具有哪些
以下是一些可以写直播脚本的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 7. Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-19
目前最高效的ai编程应用是什么
以下是一些目前高效的 AI 编程应用: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研基础大模型微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 生成性 AI 作为程序员的助手是最早的应用之一,其在大量代码库上训练,在程序员编码时给出建议,效果出色。但在编程中正确性至关重要,如研究发现 40%的 AI 生成代码包含漏洞,用户需在生成足够代码提升生产力和检查正确性之间找到平衡。Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 在写作方面,最佳免费选项有 Bing 和 Claude 2,付费选项有带有插件的 ChatGPT 4.0/ChatGPT 。目前 GPT4 仍是功能最强的人工智能写作工具,可在 Bing(选择“创新模式”)免费访问或购买 ChatGPT 订阅访问。Claude 紧随其后,也有有限免费选项。这些工具也被集成到常见办公应用程序中,如 Microsoft Office 将包括由 GPT 提供支持的副驾驶,Google Docs 将整合 Bard 的建议。
2025-01-19
目前哪些免费AI可以和Claude 2差不多
目前与 Claude 2 性能相近的免费 AI 有 Bing。GPT4 是功能最强的人工智能写作工具,但未付费只能使用 3.5 版本。微软的 Bing 使用 4 和 3.5 的混合,功能强大且能连接到互联网。谷歌的 Bard 表现令人失望,Anthropic 发布的 Claude 2 值得注意的是有非常大的上下文窗口,在处理文档和数据方面表现出色,特别是处理 PDF 文本。但需要注意的是,这些系统仍会产生幻觉,若要确保准确性,需检查其结果。
2025-01-16
目前最全面的AI有哪些
目前较为强大和知名的 AI 系统包括: 1. Claude 2:可能是公众可以使用的第二个最强大的 AI 系统。 2. Open AI 的 Code Interpreter:是迄今为止可用的最复杂的 AI 模式。 同时,人工智能的研究发展迅速,相关的资源和介绍也不断更新。例如: 1. 有关于如何使用 AI 做事的指南,为用户提供了选择正确工具做事的经验分享。 2. 有入门经典必读的资源列表,涵盖了对 Transformer 和 Latent Diffusion 模型的介绍,以及技术学习资源、构建大型语言模型的实用指南和 AI 市场的分析等。 另外,关于 OpenAI 通用人工智能(AGI)的计划也有相关信息,如原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI 等。
2025-01-16