以下为一个用 LLM 分析微信聊天记录的智能体案例相关内容:
在当今大多数现代人工智能应用程序中,检索增强生成(RAG)是标准架构。以 Sana 的企业搜索用例为例,其过程始于应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),并通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中。
当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和“提示链”,不同类型的任务并行执行,最终综合结果生成输出。
“智能体”(Agent)在人工智能和计算机科学领域是指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标分解、反思完善、记忆(包括短期记忆和长期记忆)、工具使用等关键组成部分。
在开发场景中,有上传客服聊天记录,充当智能客服的案例。此外,还有使用 GPT 的视觉功能和 TTS API 处理和讲述视频、GLM 等大模型外接数据库、开发微信小程序、开发知识库/聊天机器人搭建安全提示词 prompt 等相关案例。
设置基线:RAG是当今大多数现代人工智能应用程序的标准架构。让我们以Sana的企业搜索用例为例,了解它在幕后的工作原理。该过程始于应用程序加载和转换无结构文件(如PDF、幻灯片、文本文件)跨越企业数据孤岛,如Google Drive和Notion,转换为LLM可查询格式,通常通过像[Unstructured](https://menlovc.com/portfolio/unstructured/)*这样的数据预处理引擎进行。这些文件现在被"分块"成更小的文本块,以实现更精确的检索,并作为向量嵌入和存储在像[Pinecone](https://menlovc.com/portfolio/pinecone/)*这样的数据库中。当用户向AI应用程序提出问题时(例如,"总结我与公司X会议的所有笔记"),系统会检索语义上最相关的上下文块,并将其折叠到"元提示"中,与检索到的信息一起馈送给LLM。然后,LLM会从检索到的上下文中合成一个整洁的带有项目符号的答复返回给用户。当然,该图仅说明了一个带有一个LLM调用的单一检索步骤。在生产中,AI应用程序具有更复杂的应用程序流程,包含数十甚至数百个检索步骤。这些应用程序通常具有"提示链",其中一个检索步骤的输入馈送到下一步,并且不同类型的任务并行执行多个"提示链"。然后将结果综合在一起,以生成最终输出。[Eve](https://menlovc.com/portfolio/eve/)*法律研究的共同驾驭员,例如,可能会将针对《第七篇》的研究查询分解为专注于预定子主题的独立提示链,如雇主背景、就业历史、《第七篇》、相关案例法和原告案件支持证据。LLMs然后运行每个提示链,为每个生成中间输出,并综合各输出编写最终备忘录。
智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。
|标题|简介|作者|分类|前往查看👉|封面|入库时间|<br>|-|-|-|-|-|-|-|<br>|使用GPT的视觉功能和TTS API处理和讲述视频|这个笔记本演示了如何通过视频使用GPT的视觉功能。GPT-4不直接将视频作为输入,但我们可以使用视觉和新的128 K上下文widnow来同时描述整个视频的静态帧。|Kai Chen|开发|[使用GPT的视觉功能和TTS API处理和讲述视频](https://waytoagi.feishu.cn/wiki/SJkowbSUviLECQk9YtecwJVpnpc?table=tblJzotqp5g7xZ2b&view=vewJuuzsne)||2023/11/15|<br>|开发:GLM等大模型外接数据库|可以调整prompt,匹配不同的知识库,让LLM扮演不同的角色<br>上传公司财报,充当[财务分析师](https://www.zhihu.com/search?q=%E8%B4%A2%E5%8A%A1%E5%88%86%E6%9E%90%E5%B8%88&search_source=Entity&hybrid_search_source=Entity&hybrid_search_extra=%7B%22sourceType%22%3A%22answer%22%2C%22sourceId%22%3A3030429770%7D)<br>上传客服聊天记录,充当智能客服<br>上传经典Case,充当律师助手<br>上传医院[百科全书](https://www.zhihu.com/search?q=%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6&search_source=Entity&hybrid_search_source=Entity&hybrid_search_extra=%7B%22sourceType%22%3A%22answer%22%2C%22sourceId%22%3A3030429770%7D),充当在线问诊医生||开发|[🔥开发:GLM等大模型外接数据库](https://waytoagi.feishu.cn/wiki/GzFdwwzDMi2ii5kyq13c7Hdxnvh?table=tblJzotqp5g7xZ2b&view=vewJuuzsne)||2023/11/15|<br>|开发:微信小程序|我将手把手教下大家如何利用chatgpt来实现一个微信小程序的搭建。前半部分我们先简单介绍怎么注册小程序,后半部分介绍怎么进行开发上线。||开发|[开发:微信小程序](https://waytoagi.feishu.cn/wiki/IfCcw3ICXiI79Sk3MNJcEvkynPb)||2023/11/15|<br>|开发:知识库/聊天机器人搭建安全提示词prompt|知识库/聊天机器人搭建安全提示词prompt||开发|[开发:知识库/聊天机器人搭建安全提示词prompt](https://waytoagi.feishu.cn/wiki/Xv2EwktakiMSLJk52wZcRiuMnAc?table=tblJzotqp5g7xZ2b&view=vewJuuzsne)||2023/11/15|