Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

分析微信聊天记录的智能体

Answer

以下是关于分析微信聊天记录的智能体的相关信息:

  • 从维度转换能力的角度来看,将各种问题、业务数据等转化为语言信息与语言模型交流能提高效率,但要注意对维度的理解,避免因语言的一维性导致交流偏差。
  • 在业务助手中,主要有助手方式和业务环方式。助手方式是进行工作辅助,大模型负责优化、检索、启发等;业务环方式是大模型作为主业务流程中的一环,自动处理内容并生成结果。
  • 像 Coze 这样的 Bot 智能体,可以实现多模态资讯的跨平台推送。其初衷是让用户拥有专属助手,精准筛选有价值信息。它以扣子为中心平台,通过自研插件、工作流和 API 链接微信群、企业微信群、飞书云文档多维表格等,能根据用户需求抓取热点资讯,分析处理并以多模态形式自动推送到不同平台。
  • 在基于百川大模型的创作中,可将聊天记录的上下文转换为问答对,并对相邻信息做合并处理,还能根据需求筛选指定群或聊天对象的记录。聊天上下文窗口大小可依场景设置。
Content generated by AI large model, please carefully verify (powered by aily)

References

观点:如何深入的用好ChatGPT,以及一些思考

维度转换能力。将各种问题转化为语言问题;将业务中的各种数据转化为语言描述,作为大模型解决问题的前置条件;将通用模块问题转化为通用问题模块,从而将语言模型的调用转化成为产品的一个功能模块。用语言模型解决问题,通常会犯的错误就是对维度理解不够(当然后续多模态可能解决)。毕竟人类接触的信息是多维的,自然语言只是一维,站在高维的角度跟他聊肯定有点驴唇不对马嘴。把自己降到一维,把所有的信息都转化为语言信息后再跟他交流,交流就比较高效了。4、业务助手的应用方式助手方式:主要是进行工作辅助,不在主业务流程内。工作主体是人,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考。如下图。AIGC的业务助手中也很多是这种能力。业务环方式,大模型经过调整和prompt工程后,作为接口服务,进入到主业务流程中,作为其中一环,自动处理内容并生成结果。5、智能体——智慧员工的可能

Bot智能体 | 用Coze实现【多模态资讯的跨平台推送】

创建这样一个Bot的初衷是让每个人都可以拥有一个专属的市场和资讯的助手,帮你把最新的一手资讯以最快最好的方式整理呈现出来,更加精准有效地筛选出有价值的信息。如果只是单独使用大语言模型,我们只能获取检索到它学到封装好的,以往公共领域的知识,却没法通过它直接获取到目前实时更新的,最新鲜的信息。但是通过coze这样的AI agent流程,可以轻松的获取到最新的资讯信息,并以多模态的形式(文字,图像,文档,语音等)自动推送到不同的平台上。该Bot项目以扣子为中心平台,通过各种自研的插件,自研工作流和Coze API的创建链接了微信群,企业微信群,飞书云文档多维表格,实现不同平台的信息传递与流通。可根据用户定制化的检索需求(可在Bot或者微信群中以对话的方式直接输入需求或者获取飞书表格中的用户需求),去自动化抓取热点资讯,进一步做信息的分析处理,整合成资讯文档,返回bot对话界面。同步自动发送markdown文字和文档到微信群,企业微信群等不同的平台,让用户能够更加方便的在平时使用的聊天和沟通平台上去交互获取到有价值的一手信息。特点:1、实现跨平台联动,多模态形式内容的自动化传递;2、针对不同客户的需求去进行检索;3、检索内容的分析、总结和处理;4、整理后的资讯按交互友好的格式输出,自动化生成资讯文档。[heading4]2.效果呈现[content]Coze Bot的调试与预览,通过不同的提问去触发不同的检索功能企业微信群自动同步获得资讯检索的结果,实现多平台联动获取的资讯文档具体内容Coze与企业微信群的信息同步联动Coze Bot获取到飞书云文档多维表格中的用户需求Coze API接入微信,在微信群聊中可以调用Coze Bot进行对话交互去检索相关需求的信息。

创作:基于百川大模型向微信群大佬们虚心学习

[title]创作:基于百川大模型向微信群大佬们虚心学习[heading2]打造虚拟专家[heading3]准备数据chat模型的数据集采用问答对形式数据对齐,我们先写个函数将聊天记录的上下文转换为问答对,再把相邻的信息做一下合并处理。record为筛选的聊天记录,使用上文getMsgByTalker来获取,可以指定某个群或某个聊天对象来筛选;target为需要提取信息的目标用户,想请群里的哪位专家就填那个人的昵称,若想训练一个自己的赛博分身,也可以填自己的微信名(一般数据集会更丰富)。聊天上下文窗口大小可以根据不同的场景进行设置,群聊天建议设置大一些,私聊设置小一点。

Others are asking
如何把coze的agent发布到微信公众号上
要把 Coze 的 agent 发布到微信公众号上,您可以按照以下步骤进行操作: 1. 组装和测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入。 将写好的 prompt 粘贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能,如工作流、知识库。 在【预览与调试】模块,直接输入问题,即可与机器人对话。 2. 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮,即可将“AI 前线”发布到微信、飞书等渠道。 3. 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据相关截图,去微信公众号平台找到自己的 App ID,填入确定即可,不用解绑。 4. 体验: 最后去自己的微信公众号消息页面,就可以使用啦。 另外,还有一种方法是在 Coze 发布页面的发布平台的微信客服这里,显示“已配置”后,进行勾选并点击发布。发布成功后,可以点击微信客服旁边的立即对话、复制 Bot 链接,会弹出该微信客服的二维码,扫码即可立即体验。
2025-02-19
扣子AI应用发布到微信小程序中失败
扣子 AI 应用发布到微信小程序中失败可能有以下原因及解决办法: 1. 容器编排不运行: 宝塔面板中设置加速镜像不生效需安,通过命令行手动设置。 新建/etc/docker/daemon.json 文件(如果已经存在可以不用创建)。 在 daemon.json 中添加相应代码。 重启 Docker 服务:systemctl restart docker。若仍无法解决,可继续排查。 2. 本地镜像的方法: 服务下载:服务的百度网盘地址:https://pan.baidu.com/s/1Ueyp6KnOmD18h6wICwJKNg?pwd=85jv 提取码:85jv ;服务的夸克网盘地址:https://pan.quark.cn/s/189b6f3e0d94 。需要把 chatgptonwechat.tar 和 coze2openai.tar 下载到本地。 上传服务:在宝塔操作面板中点击文件,选择上传下载到本地的文件。上传到根目录/www/backup 文件夹下面。 导入镜像:选择 Docker 中选择本地镜像,然后选择导入镜像。导入镜像要选择上传的目录,如根目录/www/backup 。 3. 修改参数不生效:需要删掉“容器编排”和“容器”中的内容,再重新生成一次。 4. 知识库不更新:确认扣子里有点击右上角的发布按钮。 5. 微信机器人无法正常画图,给的图片链接点进去有错误提示:查看/root/chatgptonwechat/run.log 中有相关提示。可能是点链接的时候多了一个小括号。 6. 扫码后,手机登陆后,没有任何机器人的反应:配置有错错误,或者安装不对,根据步骤去逐一检查。或者重装。 7. 机器人回答问题:COW 本身处理不了一次调取多个对话。有代码能力,可以直接调整代码实现。 8. 宝塔之后登录的时候登录不上去:按下图所示重启服务器之后就好了,重启时间可能会久,但一定会重启成功,请耐心等待。 此外,零基础模板化搭建 AI 微信聊天机器人的步骤如下: 1. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: Coze 相关配置: 创建 Coze API 令牌:进入到,点击左下角的扣子 API 选项,进入到 API 管理页面,点击 API 令牌,按照图示创建第一个 API 令牌,创建成功后保存好,因为这个 API 令牌只会在创建成功后显示一次。 记下 Coze AI Bot 的 Bot ID:去到要绑定的 AI Bot 的设计界面,在所在的链接里面记下 Bot ID,将 Bot 发布到 Bot as API 上。
2025-02-18
我想了解如何在微信公众号搭建一个能发语音的数字人
以下是在微信公众号搭建能发语音的数字人的相关步骤: 1. 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi: 工作流地址:https://github.com/chaojie/ComfyUImobvoiopenapi/blob/main/wf.json 相关文件: 记得下载节点包,放进您的 node 文件夹里,这样工作流打开就不会爆红了!ComfyUI 启动后就可以将 json 文件直接拖进去使用了! 2. 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人: 组装&测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入即可。 组装&测试步骤: 将上文写好的 prompt 黏贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能:工作流、知识库。 【预览与调试】模块,直接输入问题,即可与机器人对话。 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮即可将“AI 前线”发布到微信、飞书等渠道。 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据以下截图,去微信公众号平台找到自己的 App ID,填入确定即可。不用了解绑即可。 最后去自己的微信公众号消息页面,就可以使用啦。
2025-02-18
怎么在企业微信里接入deepseek
在企业微信里接入 DeepSeek 的步骤如下: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,开通一下(这里是免费的)。若无提示则直接到第 5 步,点击确认接入。 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到你的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】。 9. 把复制好的内容,也放到自己微信里保存好。 至此,我们已经完成拿到了模型的密钥。接着,就可以去把它配置到网页聊天里使用。
2025-02-18
写微信小程序,用哪个 ai 代码助手最好
以下是一些适用于写微信小程序的 AI 代码助手推荐: 1. DIN: 搭建 OneAPI 以汇聚整合多种大模型接口。 搭建 FastGpt 作为知识库问答系统。 搭建 chatgptonwechat 接入微信,并配置 FastGpt 把知识库问答系统接入到微信。 2. Cursor: 可通过任意 AI 工具获得代码,专业代码模型表现更优。 网址:https://www.cursor.com/ 3. Deepseek(新手推荐): 网址:https://www.deepseek.com/zh 方便获取游戏代码,国内能访问,网页登录方便,目前完全免费。 4. 通义灵码: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 5. JetBrains 自身的助手插件: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 6. Marscode 及 Tencent cloud AI code Assistant 等。 7. 无影的晓颖 AI 助手: 内置在云电脑里,使用流畅,但需要在无影的云电脑中。 需要注意的是,不同的 AI 代码助手在生成特定代码时可能有不同的表现,您可以根据自己的需求和实际使用体验进行选择。
2025-02-17
ai接入微信、钉钉聊天的软件
以下是关于将 AI 接入微信、钉钉聊天的相关信息: 基于 COW 框架的 ChatBot 实现步骤: 作者为熊猫大侠,COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 张梦飞同学写了更适合小白的使用教程: 。 可实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)和常用开源插件的安装应用。 正式开始前需知:ChatBot 相较于在各大模型网页端使用区别在于需要接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 零基础模板化搭建 AI 微信聊天机器人: COW 全称 Chatgptonwechat,可在微信、飞书、钉钉等主流社交平台上实现对接各种大模型的功能。 在刚买的腾讯云服务器上通过 Docker 运行 COW,并将之前在极简未来平台创建的 API 信息填入其中。 使用 Docker 服务部署 COW 组件,宝塔面板可让技术小白以图形交互方式运维服务器,手动配置部署容器编排模板。
2025-02-15
如何用coze搭建一个总结聊天记录的功能
以下是用 Coze 搭建一个总结聊天记录功能的步骤: 1. 设计 Bot 目的:明确 Bot 的用途,例如作为一个 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效的站内信息检索服务。 2. 了解 Coze 平台常用概念和功能:包括提示词(设定 Bot 的身份和目标)、插件(通过 API 连接集成各种平台和服务)、工作流(设计复杂的多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。 3. 进行 Bot 基础设置:根据机器人的作用,设计人设和回复逻辑,限制机器人的功能使其更专注于 AI 相关的知识回答和服务,还可以加入长期记忆功能来总结聊天对话内容以更好地响应用户消息,以及设计更加美观的 Bot 开场白。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可以查官方指南。
2024-11-15
搭建一个总结聊天记录的ai
以下是搭建一个总结聊天记录的 AI 的步骤: 1. 整理聊天记录为数据集: 如果导出了多个人的聊天记录,需手动将文件下的内容汇总到一起。 汇总完成后,保存汇总文件为“train.json”。 在当前文件夹下新建一个文本文档,重命名为“1.py”,用记事本打开并粘贴相应代码。注意标红的地方需要修改。 打开命令行窗口,输入“python 1.py”完成聊天记录整理,此步骤在后续第 31 步会用到。 2. 图文原文处理: 微信无法批量复制聊天内容,多选想要复制的聊天内容,转发到群里或文件传输助手。 收藏批量转发的聊天记录,打开收藏,点进笔记,点右上角三个点,转存为笔记,返回即可全选复制所有内容。 可使用能让电脑设备和手机设备剪切板共享的工具,避免在微信文件传输助手间折腾。 3. GPTs: 若重复做同一件事三次以上,应考虑优化步骤,可创建内容排版大师的 GPTs。 GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 该 GPTs 已加入 webpilot 的 actions,可直接将文章发给它总结内容。 4. 小卡片软件: 使用的卡片软件是小作卡片 app,官网链接:https://kosaku.imxie.club/ 。 操作步骤:打开软件,点击「自制卡片」,在「记录些什么...」中粘贴 AI 生成文本内容,点击右下角保存图标即可导出。
2024-11-15
一个用llm分析微信聊天记录的智能体案例
以下为一个用 LLM 分析微信聊天记录的智能体案例相关内容: 在当今大多数现代人工智能应用程序中,检索增强生成(RAG)是标准架构。以 Sana 的企业搜索用例为例,其过程始于应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),并通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中。 当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和“提示链”,不同类型的任务并行执行,最终综合结果生成输出。 “智能体”(Agent)在人工智能和计算机科学领域是指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标分解、反思完善、记忆(包括短期记忆和长期记忆)、工具使用等关键组成部分。 在开发场景中,有上传客服聊天记录,充当智能客服的案例。此外,还有使用 GPT 的视觉功能和 TTS API 处理和讲述视频、GLM 等大模型外接数据库、开发微信小程序、开发知识库/聊天机器人搭建安全提示词 prompt 等相关案例。
2024-09-30
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
怎么做一个智能体
要创建一个智能体,以下是一些关键步骤和要点: 1. 选择平台:例如可以使用字节的扣子等平台。 2. 输入基本信息: 起一个智能体的名称。 写一段智能体的简单介绍。 使用 AI 创建一个头像。 3. 配置相关内容: 插件:插件类似于工具箱,里面可以放置一个或多个 API。扣子平台上有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等。如果现有的插件不符合需求,还可以自己制作插件并添加所需的 API。 工作流:工作流如同可视化的拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束都有特定的节点,不同节点可能需要不同信息才能工作。 知识库:配置相关知识库。 4. 测试:配置完成后进行测试。 5. 发布:注意工作流中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,建议将 api_token 作为工作流最开始的输入,用户购买后输入 api_token 再发布。 扣子官网:https://www.coze.cn/
2025-02-19
搭建AI智能体
搭建 AI 智能体的步骤和要点如下: 1. 创建智能体:输入人设等信息,并放上相关工作流。配置完成后可以进行测试,但千万不要直接发布。 工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 token 再发布。 2. 明确需求和 AI 能力: 在搭建智能体帮助提炼品牌卖点时,需要先明确 AI 的能力边界,例如 AI 对公司及所在市场不了解的部分,包括公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望在新渠道获得的结果等。 AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,更适合将智能体作为引导型的灵感提问助手。 3. 学会搭建 AI 智能体: AI 智能体如同员工或智能助手,能根据设定的工作流自动调用不同 AI 工具完成全流程任务,无需人类时刻干预。 例如设计“写作助手”的 AI 智能体,输入文章主题、风格和要求,它能自动完成文章大纲处理、初稿撰写、修改润色和排版等工作,大大提高效率。
2025-02-19
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能在机器人领域有重要应用,特别是在服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。此外,在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,并形成一个闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习,以及处理与人类社会的伦理和安全问题等。
2025-02-19
智能运维欧洲生产访问很慢的原因是什么
很抱歉,目前知识库中没有关于智能运维欧洲生产访问很慢原因的相关内容。但一般来说,可能的原因包括网络延迟、服务器负载过高、数据传输瓶颈、硬件故障、软件配置不当等。您可以进一步检查网络连接状况、服务器的性能指标、数据传输通道以及相关软件的配置参数等方面来确定具体原因。
2025-02-19
如何创建自己的智能体
创建自己的智能体可以参考以下步骤: 1. 打开扣子官网(https://www.coze.cn/),点击创建 Bot,在对话框中工作空间选择“个人空间”,并为其命名。 2. 进行提示词设置,输入人设等信息。 3. 放上创建的工作流,配置完成后进行测试。 需要注意的是: 1. 工作流中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用这个工作流会直接消耗您的费用,所以不能直接发布。您可以将 api_token 作为工作流最开始的输入,用户自己购买后,输入 api_token 就可以使用,然后再发布。 2. 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。AI 智能体包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,可以完成比较复杂的工作。 3. 通过简单 3 步创建智能体,首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像即可。
2025-02-19
情绪分析
以下是关于情绪分析的相关信息: 中文数据集: RenCECPs:由 Fuji Ren 提供,标注的博客语料库,在文档级、段落级和句子级标注了 emotion 和 sentiment,包含 1500 个博客、11000 段落和 35000 句子。 weibo_senti_100k:带情感标注的新浪微博,正负向评论约各 5 万条。 BDCI2018 汽车行业用户观点主题及情感识别:汽车论坛中对汽车的评论,标注了汽车的多个主题及情感标签,情感分为中立、正向、负向 3 类。 微调(Finetuning)案例研究:假设想要了解特定推文的正面或负面程度,对模型进行微调后,可通过在 logprobs=2 完成请求上设置来取回第一个完成令牌的对数概率,正类别的概率越高,相对情绪就越高。 品牌舆论传播相关的关键词库包含情感分析,涉及舆论传播、数据分析、主题、事件等 25 个关键词。
2025-02-19
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
分析化验单的AI
以下是关于分析化验单的 AI 和专利审查方面的 AI 的相关信息: 分析化验单的 AI: 目前没有直接针对分析化验单的具体内容,但在教育领域,AI 已展现出强大的能力。例如,借助大模型可以生成个性化学习和定制化作业,教师拥有 AI 就拥有了源源不断的真题库,学生也拥有了源源不断的错题练习库。 专利审查方面的 AI: 近年来,AI 在专利审查领域得到广泛应用,通过自动化和智能化手段,帮助专利审查员更高效地处理大量专利申请、检索相关文献、评估专利性和创新性等任务。以下是一些具体的应用和平台: 1. 专利检索与分类:AI 可通过自然语言处理和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 2. 专利分析和评估:AI 能够分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 3. 自动化专利申请:AI 可以帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 4. 专利图像和图表分析:AI 能分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 5. 专利趋势分析和预测:AI 可以分析大量专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体使用这些平台的步骤如下: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-17
能分析医学化验单的AI有哪些?
以下是一些能够分析医学化验单的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-17