直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我是一名公司的财务,我应该怎么样把 agent 技术用在我的工作场景中

回答

智能体(Agent)可以根据其复杂性和功能分为以下几种类型:

  1. 简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。
  2. 基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。比如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。
  3. 目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。像机器人导航系统,它有明确的目的地,并计划路线以避免障碍。
  4. 效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。
  5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。

对于公司财务人员来说,可以考虑将目标导向型智能体或效用型智能体技术应用于工作场景。例如,在财务预算和规划方面,设定明确的财务目标(如成本控制、利润增长等),利用智能体评估不同的财务策略和行动方案,选择最优的方案以实现目标。或者在投资决策中,通过量化不同投资项目的效用值,权衡风险和回报,辅助做出更明智的投资选择。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。1.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。1.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。1.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。1.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

其他人在问
如何训练Agent?
在人工智能领域中,训练 Agent 主要有以下方法和特点: 1. 基于迁移学习和元学习的 Agent 训练: 传统强化学习中,Agent 训练消耗大量样本和时间,泛化能力不足。为突破此瓶颈,引入迁移学习,促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力。 元学习让 Agent 学会从少量样本中迅速掌握新任务最优策略,利用已有知识和策略调整学习路径,减少对大规模样本集依赖。 但迁移学习和元学习面临挑战,如迁移学习在源任务与目标任务差异大时可能无效甚至负面迁移,元学习需大量预训练和样本构建学习能力,使通用高效学习策略开发复杂艰巨。 时间:21 世纪初至今 特点:迁移学习将一个任务知识迁移到其他任务;元学习学习如何学习,快速适应新任务 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM 优点:提高学习效率,适应新任务 缺点:对源任务和目标任务相似性有要求 2. 基于强化学习的 Agent 训练: 强化学习关注如何让 Agent 通过与环境互动自我学习,在特定任务中累积最大长期奖励。起初主要依托策略搜索和价值函数优化等算法,如 Qlearning 和 SARSA。 随着深度学习兴起,深度神经网络与强化学习结合形成深度强化学习,赋予 Agent 从高维输入学习复杂策略的能力,有 AlphaGo 和 DQN 等成果。 深度强化学习允许 Agent 在未知环境自主探索学习,无需人工指导,在游戏、机器人控制等领域有应用潜力。 但面临诸多挑战,包括训练周期长、采样效率低、稳定性问题,在复杂真实环境应用困难。 时间:20 世纪 90 年代至今 特点:通过试错学习最优行为策略,以最大化累积奖励 技术:Qlearning、SARSA、深度强化学习(结合 DNN 和 RL) 优点:能够处理高维状态空间和连续动作空间 缺点:样本效率低,训练时间长
2024-11-21
agent的搭建
以下是一些常见的 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 搭建工作流驱动的 Agent 通常可分为以下 3 个步骤: 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-11-21
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19
AI agent和智能体有什么区别
AI agent 和智能体在以下方面存在区别: 1. 概念侧重点:AI agent 更强调作为数字人的大脑,拥有记忆模块等,以实现更真实的交互;智能体则被视为智能的最小单元,是可以设定目标后主动完成任务的。 2. 能力构成:AI agent 主要通过接入大语言模型,并结合工具、记忆、行动、规划等能力来发挥作用;智能体不仅具备推理能力,还能执行全自动化业务,但目前许多相关产品仍需人类参与。 3. 实现方式:AI agent 目前行业里主要通过如 langchain 框架,在 prompt 层和工具层完成设计,将大模型与工具进行串接;智能体在实现上可能涉及更多复杂的技术和逻辑。
2024-11-12
我想从互联网上搜集某些类型的论文,并且自动整理成我想要的格式,有什么基于大模型的agent或者软件推荐吗
以下是一些基于大模型的 agent 或者软件,可帮助您从互联网上搜集某些类型的论文并自动整理成您想要的格式: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,可高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,在 AI 文章排版方面,以下工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
AI在企业落地的场景或案例
以下是一些 AI 在企业落地的场景或案例: 企业运营方面:包括日常办公文档材料的撰写整理、营销对话机器人的应用、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源的简历筛选、预招聘、员工培训等。 教育领域:协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体行业:定制化游戏,动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商领域:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险行业:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。 在企业中建构人工智能的案例研究包括: 智能扬声器:需要探测触发词或唤醒词、进行语音识别、意图识别,并执行相关程序。但智能音箱公司因需对每个用户需求单独编写程序而花费大量资金教育客户,这是其面临的困境。 自动驾驶汽车:包括汽车检测(使用监督学习,需多个方位的摄像头或传感器)、行人检测(使用相似技术)、运动规划(输出驾驶路径和速度)。 人工智能团队的角色示例有: 软件工程师:负责软件编程工作,在团队中占比 50%以上。 机器学习工程师:创建映射或算法,搜集和处理数据以训练神经网络或深度学习算法。 机器学习研究员:开发机器学习前沿技术,可能发表论文或专注研究。 应用机器学习科学家:从学术文献或研究文献中寻找前沿技术来解决问题。 数据科学家:检测和分析数据背后的意义,并向团队展示结论。 数据工程师:整理数据,确保数据安全、易保存和读取。 AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2024-11-20
打印场景下格式转换的需求点
在打印场景下,格式转换的需求点主要包括以下方面: 1. 不同文本类型的转换,例如将俚语翻译成商务书信。 2. 不同格式之间的转换,如 ChatGPT 擅长的从 JSON 到 HTML、XML、Markdown 等格式的转换。在提示中需描述输入和输出格式,例如将 Python 字典从 JSON 转换为带有列标题和标题的 HTML 表格,并使用相关函数显示 HTML 响应。 3. 对于卡牌生成器的搭建,在为卡牌添加说明性文字时,涉及到文字图层的处理。叠图功能只允许两个图层叠放,所以对文字图层要进行格式转换。具体包括: 先对“card_description”的输出按索引序号奇偶性进行分列。 由于叠图只支持传入图像的 url(字符串格式),需将分列后的两个 Array<Object>结构“打破”,提取图像链接并重组为字符串列表 Array<String>。 若分列时原 Array<Object>中元素个数为奇数个,会导致分列后两个列表元素数量不同。在格式转换过程中,需比较两个列表长度,若不同则用事先准备好的图像 url 扩展较短的列表,以保证叠图顺利进行。
2024-11-20
AI 在股票交易行业的落地场景有哪些
AI 在股票交易行业的落地场景主要包括以下方面: 1. 市场分析与预测:利用大数据和机器学习算法,对市场趋势、宏观经济数据、公司财务数据等进行分析和预测,为投资决策提供参考。 2. 风险评估与管理:通过模型评估投资组合的风险水平,及时发现潜在风险并采取相应的风险管理措施。 3. 交易策略优化:基于历史交易数据和市场情况,优化交易策略,提高交易效率和盈利能力。 4. 智能投顾:为投资者提供个性化的投资建议和资产配置方案。 5. 欺诈检测:识别和防范股票交易中的欺诈行为,保障交易的安全性和公正性。
2024-11-18
ai的落地场景应用
以下是 AI 的一些落地场景应用: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果和提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:暂未提及具体应用场景。 此外,还有以下一些具体的应用: 1. 辅助创作与学习:如 AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 在“AI + 汽车”领域: AI 营销赛道: AI 辅助“市场营销”和“新媒体运营”,包括汽车热点营销、用户画像预测、营销内容创作、内容审核、用户评论回复,以及“一键生图”。 AI 提升“销售体验”,引导“留资或下单”,如智能“试驾”、“金牌销售”智能导购、“互动游戏”智能导购。 AI 提升“销售能力”,基于汽车销售场景自动出题,可采用多种形式,如选择题、对话或情景模拟。
2024-11-18
AI在会计岗位落地的场景
AI 在会计岗位落地的场景包括以下方面: 1. 预测:生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,并提供适应模型的建议,为公司决策提供依据。 2. 报告:生成式 AI 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务:会计和税务团队在咨询规则和应用方面,生成式 AI 可以帮助综合、总结,并就税法和潜在扣除项提出可能的答案。 4. 采购和应付账款:生成式 AI 能够帮助自动生成和调整合同、采购订单和发票以及提醒。 5. RPA 方面:RPA 是流程自动化机器人,可替代电脑办公中的重复有逻辑工作,为企业降本增效。在财务领域,可用于开票、网银流水下载等。 6. 税务工作:在金税四期背景下,利用引刀 AP 创建网页实现智能解答税务问题,结合飞书避免信息泄露和实现自动回复等。
2024-11-15
AI 在教育行业的落地场景有哪些
AI 在教育行业的落地场景主要包括以下几个方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供定制化的学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP),如 Pearson 的 Intelligent Essay Assessor,自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML,创建定制的学习内容,引导学生通过对话学习,提供即时反馈,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):如 Labster 的虚拟实验室平台,提供虚拟实验场景,让学生安全进行实验操作并获得 AI 系统反馈。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文相关:包括论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等的教育资源。
2024-11-15
哪些AI工具可以帮助财务提高工作效率
以下是一些可以帮助财务提高工作效率的 AI 工具: 1. 生成式 AI: 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并建议如何适应模型以支持公司决策。 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 会计和税务方面:综合、总结税法和潜在扣除项,提供可能的答案。 采购和应付账款方面:自动生成和调整合同、采购订单、发票以及提醒。 2. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务。 3. Clari:专门从事智能收入运营的软件,能统一各种来源的数据并以易于理解的方式呈现,简化财务预测过程。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
AI在中国国内财务领域的应用
AI 在中国国内财务领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资决策。 例如摩根大通通过处理大量数据集、检测模式并整合多个变量,利用人工智能完善经济和货币预测,为政策选择提供信息,改善利率、流动性管理和宏观审慎措施的决策。
2024-11-10
最好的AI财务分析软件
以下是为您提供的关于 AI 财务分析软件的相关信息: 在销售相关的 AI 工具方面,有以下几种: 1. Salesforce 爱因斯坦:来自 Salesforce,能分析大量数据集以识别潜在客户,生成预测性潜在客户评分,还能自动化日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 2. Clari:专门从事智能收入运营,以创建高度准确的收入预测著称,能统一多源数据并以易理解方式呈现,简化财务预测过程。 3. Hightime:是销售团队的 AI 助手,可处理重复性任务和耗时研究。 在金融服务领域,生成式 AI 具有以下作用: 1. 帮助金融服务团队改进内部流程,简化财务团队日常工作流程,从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。 预测方面:可帮助编写公式和查询实现分析自动化,发现模式,为预测建议输入并建议适应模型的方法。 报告方面:可自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析。 会计和税务方面:能综合、总结并就税法和潜在扣除项提出可能答案。 采购和应付账款方面:可帮助自动生成和调整合同、采购订单、发票及提醒。 此外,还有 MondaytoFri 这款被提及的 AI 财务分析软件。 以上只是部分例子,实际上还有许多其他的 AI 财务分析工具可根据您的具体需求选择使用。
2024-10-11
我想借助AI这个工具学习创意文本生产,写小说或者是具有知识产权的作品,最终实现财务自由,我可以如何规划,应该 做什么?
要借助 AI 工具学习创意文本生产并实现财务自由,您可以参考以下规划: 首先,深入学习和了解 AI 在创意文本生成方面的应用和技术。掌握常见的 AI 写作工具,如某些具有辅助创作功能的软件。 其次,不断提升自己的写作基础和创意能力。阅读大量优秀的小说和文学作品,学习不同的写作风格和技巧,积累丰富的素材和灵感。 然后,制定明确的创作计划。确定自己擅长和感兴趣的小说类型或主题,设定合理的写作目标和进度安排。 在创作过程中,充分利用 AI 工具提供的创意启发和辅助功能,但要注意保持作品的独特性和原创性,避免过度依赖 AI 生成的内容。 完成作品后,积极寻求出版或在合适的平台发布,通过版权销售、付费阅读等方式获取收益。 同时,持续关注市场需求和趋势,不断改进和优化自己的作品,以提高其市场竞争力。 需要注意的是,实现财务自由并非一蹴而就,需要长期的努力和坚持。
2024-10-11
财务分析ai
以下是关于财务分析 AI 的相关信息: 在金融服务领域,AI 有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资决策。 此外,还有关于投资 10 万让 AI 买股票的相关内容,但未提供具体收益详情。在 AI 监管政策方面,强调了公平性、可解释性、问责制和治理等原则,例如在某些情况下,AI 决策应具有合理性和可解释性,治理措施应确保对 AI 系统的有效监督,并建立明确的责任线。
2024-09-22
国内进行财务数据分析的AI工具有哪些
以下是国内可用于财务数据分析的 AI 工具: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 需要注意的是,这些工具并非专门针对财务数据分析,但在某些情况下可能对财务数据的整理和分析有所帮助。在选择工具时,您应根据具体需求,考虑其是否支持所需的功能、与其他相关软件的兼容性等因素。
2024-09-13
我是一名高中历史老师,请问用什么大模型能帮我做教学设计
以下为您推荐一些利用大模型辅助高中历史教学设计的案例: 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。 您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。
2024-11-17
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
你是一名课程开发专家,现在要以“AI技术在课程设计中在应用“现金箱管理”,课程对象是银行柜员,时长2小时。
对于“AI 技术在课程设计中应用于‘现金箱管理’,课程对象是银行柜员,时长 2 小时”的需求,目前暂时没有相关的具体内容。但可以考虑以下课程设计思路: 首先,在课程开始的前 30 分钟,介绍 AI 技术的基本概念和在金融领域的应用概况,引出其在现金箱管理中的潜在作用。 接下来的 40 分钟,详细讲解 AI 技术如何优化现金箱管理的流程,例如通过智能监控系统实现对现金箱的实时监控和风险预警。 然后用 30 分钟进行案例分析,展示实际应用中 AI 技术成功提升现金箱管理效率和安全性的案例。 最后 20 分钟,组织学员进行小组讨论和交流,让他们分享自己对 AI 技术应用于现金箱管理的理解和想法,并进行总结和答疑。
2024-11-02
作为一名小白,如何很好的学习并使用AI工具
对于小白如何很好地学习并使用 AI 工具,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于想要了解 AI 生成图像和生成视频的朋友们,还有以下几点建议: 1. 多看教程,多实践:通过学习教程和反复实践,快速掌握 AI 工具的使用方法。 2. 积极参与社群交流:加入相关社群,向有经验的朋友请教,获得宝贵经验和建议。 3. 保持好奇心和探索精神:AI 技术发展迅速,不断学习和探索新技术,保持竞争力。 总的来说,AI 时代对视频内容创作产生了深远影响,提高了制作效率,降低了制作成本,使更多人能够参与到视频创作中来。对于设计小白来说,这是提升创作能力的好机会。对于超出自己理解范围内的事情,最简单的方法就是试一试,学习新东西,百闻不如一练。尽可能简单地试用 AI 工具,能让普通人更快在这场 AI 的发展中受益。
2024-10-30
你是一名课程开发专家,现在要以“AI技术在课程设计中的应用“为题展开培训,课程对象是企业内部培训师,时长1天。 课程要解决以下问题: 1.用AI工具做需求数据统计 2.用AI工具设计课程题目 3.用AI工具设计课程大纲。4.用AI工具制作PPT5.用AI工具画配图。 要求如下: 1.需要到三级大纲。 2、结构完整。 格式如下: 一、(一级大纲) 1、(二级大纲) 1.1(三级大纲)
一、AI 技术在课程设计中的应用 1、AI 工具与需求数据统计 1.1 Chat Excel 处理数据 1.2 让 AI 辅助编写苹果系统右键“快速操作”实现一键视频压缩、加速 1.5x 1.3 让 AI 辅助编写苹果“自动操作”实现批量统计学生作业字数 2、AI 工具与课程题目设计 3、AI 工具与课程大纲设计 4、AI 工具与 PPT 制作 5、AI 工具与配图绘制 二、生成式人工智能在教学中的应用 1、生成式人工智能的基本原理 1.1 文生文 1.2 文生图 1.3 文生音频 1.4 文生视频 2、生成式人工智能的最少必要知识 2.1 生成式 AI 原理 2.2 能力范围 2.3 性能参数 3、人工智能的学习方式 3.1 监督学习 3.2 无监督学习 3.3 强化学习 4、生成式人工智能的应用案例 4.1 根据消费者购买行为偏好分组 4.2 手机相册里的人脸识别分类 4.3 根据房屋特征面积预测价格 4.4 垃圾短信检测分类 4.5 汽车自动驾驶或路径规划导航 4.6 高级游戏人机对弈 5、AI 与教育的关系 5.1 AI 辅助教师的一天 5.2 各大模型之间的使用差异 5.3 教师使用 AI 小技巧
2024-10-28
你是一名课程开发专家,现在要以“AI技术在课程设计中的应用“为题展开培训,课程对象是企业内部培训师,时长1天。 课程要解决以下问题: 1.用AI工具做需求数据统计 2.用AI工具设计课程题目 3.用AI工具设计课程大纲。4.用AI工具制作PPT5.用AI工具画配图。 要求如下: 需要到三级大纲。 2、结构完整。 格式如下: 一级大纲) 二级大纲) (三级大纲)
以下是以“AI 技术在课程设计中的应用”为题,为企业内部培训师设计的一天培训课程大纲: 一级大纲) AI 技术在课程设计中的应用概述 二级大纲) AI 技术的基本概念与分类 三级大纲) 监督学习 三级大纲) 无监督学习 三级大纲) 强化学习 三级大纲) 生成式 AI 二级大纲) AI 技术的应用领域与案例 三级大纲) 根据消费者购买行为偏好分组 三级大纲) 手机相册里的人脸识别分类 三级大纲) 根据房屋特征面积预测价格 三级大纲) 垃圾短信检测分类 三级大纲) 汽车自动驾驶或路径规划导航 三级大纲) 高级游戏人机对弈 一级大纲) AI 工具在课程设计中的具体应用 二级大纲) 用 AI 工具做需求数据统计 三级大纲) Chat Excel 处理 Excel 数据 三级大纲) 让 AI 辅助编写苹果系统右键“快速操作”实现一键视频压缩、加速 1.5x 三级大纲) 让 AI 辅助编写苹果“自动操作”实现批量统计学生作业字数 二级大纲) 用 AI 工具设计课程题目 三级大纲) 基于数据分析生成题目 三级大纲) 利用自然语言处理优化题目表述 二级大纲) 用 AI 工具设计课程大纲 三级大纲) 依据需求分析生成大纲框架 三级大纲) 完善大纲细节与逻辑 二级大纲) 用 AI 工具制作 PPT 三级大纲) 内容排版与布局设计 三级大纲) 图表与图片的生成与插入 二级大纲) 用 AI 工具画配图 三级大纲) 选择合适的 AI 绘画工具 三级大纲) 明确配图需求与风格 一级大纲) 相关法规与注意事项 二级大纲) 国家互联网信息办公室等七部门的相关规定 三级大纲) 《生成式人工智能服务管理暂行办法》的解读 一级大纲) 总结与交流 二级大纲) 课程设计实践经验分享 二级大纲) 问题答疑与交流互动
2024-10-28