Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是Agent

Answer

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动以实现特定目标的实体。它可以是软件程序,也可以是硬件设备。

从产品角度来看,比如我们的 Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。为使角色更生动,可设计背景故事,明确其起源、经历和动机,定义性格特点、说话方式和风格,以及设计对话风格和角色技能。

在结合大型语言模型(LLM)的情况下,LLM Agent 能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文,长期记忆存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助手段)和行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。

在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆、长期记忆)和工具使用(调用外部 API 获取额外信息)等方面。

Content generated by AI large model, please carefully verify (powered by aily)

References

Roger:从产品角度思考 Agent 设计

我们的Agent是一个历史新闻探索向导。身份:历史新闻探索向导性格:知识渊博、温暖亲切、富有同情心角色:主导新闻解析和历史背景分析为了使角色更加生动,我为Agent设计了一个简短的背景故事。比如,这个Agent曾是一位历史学家,对世界上的重大历史事件了如指掌,充满热情,愿意分享知识。怎么写好角色个性:角色背景和身份:编写背景故事,明确起源、经历和动机性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格角色互动方式:设计对话风格,从基本问答到深入讨论角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性正如《[Character.ai:每个人都可定制自己的个性化AI](https://waytoagi.feishu.cn/wiki/EoBkwirgjiqscKkAO6Wchyf1nPe)》所写:个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家Robert Jeffrey Sternberg提出了“爱情三角理论”,认为爱情包含“激情”、“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。

ComfyUI & LLM:如何在ComfyUI中高效使用LLM

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。你可以把Agent想象成一个具有特定目标和行为能力的智能角色,它们可以根据环境变化做出相应的决策和反应。[heading3]LLM Agent[content]LLM Agent是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统。这种系统能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。大语言模型-Agent框架[heading3]LLM Agent组成部分:[content]1.规划(Planning)定义:规划是Agent的思维模型,负责将复杂任务分解成可执行的子任务,并评估这些子任务的执行策略。实现方式:通过使用大型语言模型的提示工程(如ReAct、CoT推理模式)来实现精准任务拆解和分步解决。2.记忆(Memory)定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。实现方式:短期记忆用于存储对话上下文,支持多轮对话;长期记忆存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取。3.工具(Tools)定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,例如使用插件解析文档、生成图像等。4.行动(Action)定义:行动是Agent将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。实现方式:根据规划和记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

问:什么是智能体 Agent

"智能体"(Agent)在人工智能和计算机科学领域是一个非常重要的概念。它指的是一种能够感知环境并采取行动以实现特定目标的实体。智能体可以是软件程序,也可以是硬件设备。以下是对智能体的详细介绍:[heading3]智能体的定义[content]智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

Others are asking
如何把coze的agent发布到微信公众号上
要把 Coze 的 agent 发布到微信公众号上,您可以按照以下步骤进行操作: 1. 组装和测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入。 将写好的 prompt 粘贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能,如工作流、知识库。 在【预览与调试】模块,直接输入问题,即可与机器人对话。 2. 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮,即可将“AI 前线”发布到微信、飞书等渠道。 3. 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据相关截图,去微信公众号平台找到自己的 App ID,填入确定即可,不用解绑。 4. 体验: 最后去自己的微信公众号消息页面,就可以使用啦。 另外,还有一种方法是在 Coze 发布页面的发布平台的微信客服这里,显示“已配置”后,进行勾选并点击发布。发布成功后,可以点击微信客服旁边的立即对话、复制 Bot 链接,会弹出该微信客服的二维码,扫码即可立即体验。
2025-02-19
agent训练
在人工智能领域中,AI Agent 的训练具有以下特点: 传统强化学习中,Agent 训练往往需大量样本和时间,且泛化能力不足。 为突破瓶颈,引入了迁移学习:通过促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力,但当源任务与目标任务差异大时,可能无法发挥效果甚至出现负面迁移。 探索了元学习:核心是让 Agent 学会从少量样本中迅速掌握新任务最优策略,能利用已有知识和策略调整学习路径适应新任务,减少对大规模样本集依赖,但需要大量预训练和样本构建学习能力,使开发通用高效学习策略复杂艰巨。 时间:21 世纪初至今 特点:迁移学习是将一个任务学到的知识迁移到其他任务;元学习是学习如何学习,快速适应新任务。 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM。 优点:提高学习效率,适应新任务。 缺点:对源任务和目标任务的相似性有一定要求。 此外,智谱 AI 开源的语言模型中与 Agent 相关的有: AgentLM7B:提出了 AgentTuning 方法,开源了包含 1866 个高质量交互、6 个多样化真实场景任务的 Agent 数据集 AgentInstruct,基于上述利用 Llama2 微调而成,上下文 token 数为 4K。 AgentLM13B:上下文 token 数为 4K。 AgentLM70B:上下文 token 数为 8K。
2025-02-18
agent和copilot的区别
Copilot 和 Agent 主要有以下区别: 1. 核心功能: Copilot 更像是辅助驾驶员,依赖人类指导和提示完成任务,功能局限于给定框架内。 Agent 像初级主驾驶,具有更高自主性和决策能力,能根据目标自主规划处理流程并自我迭代调整。 2. 流程决策: Copilot 处理流程依赖人类确定,是静态的,参与更多在局部环节。 Agent 解决问题流程由 AI 自主确定,是动态的,能自行规划任务步骤并根据反馈调整流程。 3. 应用范围: Copilot 主要用于处理简单、特定任务,作为工具或助手存在,需要人类引导监督。 Agent 能够处理复杂、大型任务,并在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot 主要依赖 LLM 性能,开发重点在于 Prompt Engineering。 Agent 同样依赖 LLM 性能,开发重点在于 Flow Engineering,把外围流程和框架系统化。 此外,Agent 具备“决策权”,可自主处理问题,无需确认;Copilot 需要人类确认才能执行任务。业界普遍认为,Copilot 更适合各行业现有软件大厂,而 AI Agent 为创业公司提供了探索空间。
2025-02-18
AI agent 是什么?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-02-17
有关agent的介绍
AI Agent 是当前 AI 领域中较为热门的概念,被认为是大模型未来的主要发展方向之一。 从原理上看,中间的“智能体”通常是 LLM(语言模型)或大模型。为其增加的四个能力分别是工具、记忆、行动和规划。目前行业中主要使用 langchain 框架,将 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。例如,给大模型提供长期记忆,相当于给予一个数据库工具让其记录重要信息;规划和行动则是在大模型的 prompt 层进行逻辑设计,如将目标拆解并输出不同的固定格式 action 指令给工具。 从产品角度,Agent 可以有不同的设定。比如是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析,还可以为其设计背景故事使其更加生动。 在人工智能领域,Agent 智能代理是一种能够感知环境并根据感知信息做出决策以实现特定目标的系统,能够自动执行任务,如搜索信息、监控系统状态或与用户交互。
2025-02-16
AIagent的发展方向
AI Agent 被认为是大模型未来的主要发展方向之一,其发展具有以下特点和阶段: 从原理上看,中间的“智能体”通常是 LLM 或大模型,为其增加了工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 在人工智能的发展历程中,AI Agent 并非一蹴而就,其发展可分为几个阶段,并受到符号主义、连接主义、行为主义的影响。在人工智能的黎明时期,符号人工智能作为主导范式,以对符号逻辑的依赖著称,代表之作是基于知识的专家系统。其特点是基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。优点是推理过程明确、可解释性强,缺点是知识获取困难、缺乏常识、难以处理模糊性。时间为 20 世纪 50 70 年代。 近期出现的各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。AI Agent 在辅助高效处理信息和简便信息表达方面表现出色,例如智能摘要能辅助快速筛选信息,自然语言描述可生成美观可用的图片。在工作流方面,每个人应根据自身情况找到适合的工具,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。关于 AI Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。
2025-02-15