Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

推荐下好用的具备图像OCR能力的大模型

Answer

目前在具备图像 OCR 能力的大模型方面,一些较为知名和好用的包括百度的文心大模型、阿里云的通义大模型等。但大模型的性能和适用场景可能会因具体需求和使用场景的不同而有所差异。您可以根据自己的具体需求进一步评估和选择。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
帮我推荐一下好用的办公AI
以下为一些好用的办公 AI 应用推荐: 联想设备管理平台:这是一个 AI 办公设备管理系统,运用数据分析、物联网技术,市场规模达数亿美元。它能管理办公设备,提高设备利用率,比如当打印机墨盒快用完时,系统会自动提醒并安排更换。 WPS 文档翻译功能:作为 AI 办公文档翻译工具,采用自然语言处理技术,市场规模达数亿美元。可快速翻译办公文档,提高工作效率,比如用户需要将一份中文报告翻译成英文,只需点击翻译按钮,即可快速得到翻译结果。 豆果美食 APP:是一个 AI 菜谱生成平台,利用自然语言处理、数据分析技术,市场规模达数亿美元。能根据用户口味和现有食材生成个性化菜谱,例如用户有鸡肉、土豆等食材,APP 会推荐土豆烧鸡等菜谱。 沪江开心词场:作为 AI 语言学习助手,运用自然语言处理、机器学习技术,市场规模达数十亿美元。可辅助用户学习语言,提供个性化学习方案,比如根据用户的错题情况推荐针对性的复习内容。 爱奇艺智能推荐:这是一个 AI 电影推荐系统,通过数据分析、机器学习技术,市场规模达数亿美元。能根据用户喜好推荐电影,例如如果用户经常观看科幻电影,系统会推荐更多优质的科幻片。 WPS Office:作为 AI 办公自动化工具,借助自然语言处理、机器学习技术,市场规模达数十亿美元。可提高办公效率,实现自动化办公流程,比如智能排版、语法检查等功能。
2024-12-27
ocr
关于 OCR 的相关信息如下: GPT 的 OCR 识别问题及解决方案: 问题:开启代码执行功能时,GPT 会尝试用代码完成 OCR,导致无法正确识别图片文字。 解决方案: 如果是自定义 GPT,关闭 Code Interpreter。 无法关闭时,提问时明确说明“不要执行代码,请用自身多模态能力识别文字”。 直接使用 ChatGPT,而非 GPT。参考链接: 开源的 Zerox OCR 工具: 支持将 PDF、DOCX 转换为 Markdown。 可并发处理,能选择特定页面及模型选项。详细介绍参考:
2025-01-17
ocr大模型的原理
OCR 大模型的原理如下: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,一开始给定提示词,大模型结合自身存储的知识进行计算推理,算出下一个单词的概率并输出,新的输出与过去的输入一起成为新的输入来计算下一个词,直到计算出的概率最大时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。预训练需要花费大量时间和算力资源,且在没有其他外部帮助的情况下,大模型所知道的知识信息可能不完备和滞后。 3. 规模效应:参数规模的增加使得大模型实现了量变到质变的突破,最终“涌现”出惊人的“智能”。就像人类自身,无论是物种进化还是个体学习成长,都有类似“涌现”的结构。
2024-12-26
ocr
关于 OCR 的相关信息如下: GPT 的 OCR 识别问题及解决方案: 问题:开启代码执行功能时,GPT 会尝试用代码完成 OCR,导致无法正确识别图片文字。 解决方案: 如果是自定义 GPT,关闭 Code Interpreter。 无法关闭时,提问时明确说明“不要执行代码,请用自身多模态能力识别文字”。 直接使用 ChatGPT,而非 GPT。参考链接: 开源的 Zerox OCR 工具: 支持 PDF、DOCX 转换为 Markdown。 可并发处理,能选择特定页面及模型选项。详细介绍参考:
2024-12-26
用大模型将扫描版PDF进行OCR的工具
以下是一些关于用大模型将扫描版 PDF 进行 OCR 的工具的相关信息: kimi 目前不支持扫描版本的 PDF,需要纯文字才能识别。 大模型招投标文件关键数据提取方案中的输入模块设计,支持多种格式的文档输入,包括 PDF 等。对于图片,可以借助开放平台工具中的 OCR 工具进行文本提取。 在 0 基础跨界 AI 编程共学零基础手搓 AI 拍立得银海的相关内容中,提到了将 OCR 添加到工作流程中,输入为一张图片,具备图像理解和识别图像文本信息两个能力,之后以这两个能力生成的内容为输入使用大模型生成文案标题和文案。
2024-12-11
推荐可以OCR的AI
目前在 OCR(光学字符识别)领域,有一些表现出色的 AI 工具,例如百度 OCR、腾讯 OCR 等。这些工具通常具有较高的识别准确率和丰富的功能,可以满足不同场景下的 OCR 需求。
2024-09-26
OCR文字 识别的软件
以下为您介绍一些与 OCR 文字识别相关的内容: 在“安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语”中提到使用了 Simple OCR 插件,它能够识别图片中的文字,并返回识别结果,用于读取用户上传图片或文件的文字,并做相应处理。 在移动端图片视觉处理方面,对于试卷拍照去除书写笔迹,有以下详细方法: 1. 图像预处理: 图像去噪:使用高斯滤波、中值滤波等去噪算法去除图像中的噪声。 图像增强:通过直方图均衡化、对比度增强等增强算法提升图像的清晰度和对比度。 2. 图像分割: 使用阈值分割、边缘检测和基于区域的分割等算法将试卷图像中的书写笔迹和背景分离。 3. 文字检测: 在分割后的图像中,使用基于深度学习的文本检测模型等文字检测算法识别出试卷上的文字区域。 4. 文字识别: 对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据。常用技术包括基于深度学习的端到端文本识别模型和传统的 OCR 技术。 5. 后处理: 根据需求进行后处理,如去除残余的噪点、填补文字区域的空白等。 6. 机器学习模型训练(可选): 如有足够的数据,可以采用机器学习技术训练模型,通过学习样本中的书写笔迹特征来自动去除试卷上的笔迹。 7. 优化算法:
2024-09-18
AI智能图像生成软件
以下是为您介绍的 AI 智能图像生成软件: 1. Imagen 3: 功能点: 根据用户输入的 Prompt 生成图像。 能自动拆解用户输入的 Prompt,并提供下拉框选项。 提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队,用户可直接使用。 免费使用。 交互人性化,如自动联想和下拉框选项。 具有较好的语义理解能力,能生成符合描述的图像。 灵活性强,用户可根据自动联想调整 Prompt 生成不同图像。 2. 好用的图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 Retrato:AI 工具,将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,将上传的照片转换为芭比风格,效果好。 3. 藏师傅教您用 AI 三步制作任意公司的周边图片: 流程: 获取 Logo 图片的描述。 根据 Logo 图片的描述和生成意图生成图片提示词。 将图片和提示词输入 Comfyui 工作生成。
2025-01-23
ai图像生成软件
以下是一些 AI 图像生成软件: 1. 根据视频脚本生成短视频的工具: ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 Runway:AI 视频创作工具,能将文本转化为风格化视频内容。 艺映 AI:专注人工智能视频,提供文生视频、图生视频、视频转漫等服务。 2. AI 绘图 Imagen3: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:自动拆解 Prompt,并提供下拉框选项。 自动联想:帮助用户选择更合适的词汇。 优势: 无需排队,可直接使用。 免费使用。 交互人性化,有自动联想和下拉框选项。 语义理解能力较好,能生成符合描述的图像。 灵活性强,用户可根据自动联想调整 Prompt 生成不同图像。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-23
ai图像生成软件
以下是一些 AI 图像生成软件: 1. 根据视频脚本生成短视频的工具: ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 Runway:AI 视频创作工具,能将文本转化为风格化视频内容。 艺映 AI:专注人工智能视频,提供文生视频、图生视频、视频转漫等服务。 2. AI 绘图 Imagen3: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:自动拆解 Prompt 并提供下拉框选项。 自动联想:帮助用户选择更合适词汇。 优势: 无需排队,可直接使用。 免费使用。 交互人性化,有自动联想和下拉框选项。 语义理解好,能生成符合描述的图像。 灵活性强,用户可根据自动联想调整 Prompt 生成不同图像。 这些工具各有特点,适用于不同应用场景和需求。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-23
图像ai和视频ai入门
以下是图像 AI 和视频 AI 的入门建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 图像 AI 和视频 AI 产品推荐: 海螺 AI: MiniMax 视频模型不仅可以准确识别用户上传的图片,并确保所生成视频在形象保持上与原输入图像高度一致,且光影、色调完美嵌入新场景的设定,为创作者提供连贯、深度创作的空间。 在指令响应方面,还能理解超出图片内容之外的文本,解构指令框架和深层语义并在视频生成中整合,实现“所写即所见”。 不依靠特效模板就能实现顶级的影视特效,用户能够在图像基础上充分发挥想象力,创作出丰富多变的电影级视频。 人物表情控制力强,能让视频表达更能深入人心。 近期上线了提示词优化功能,对于更专业的创作者,开放 2000 字的提示词空间,让创作更加精准。 国内图像类产品: 可灵:由快手团队开发,主要用于生成高质量的图像和视频,但价格相对较高。 通义万相:在中文理解和处理方面表现出色,用户可以从多种艺术风格和图像风格中进行选择,操作界面设计简洁直观,用户友好度高,重点是现在免费,每天签到获取灵感值就可以,但存在一些局限性,如某些类型的图像可能无法生成,在处理非中文语言或国际化内容方面可能不如国际工具出色。
2025-01-13
图像ai和视频ai怎么学习
以下是关于图像 AI 和视频 AI 学习的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 技术原理理解: 了解相关技术名词,如: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。 了解技术里程碑,如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-01-13
图像的提示词
以下是关于图像提示词的相关内容: 艺术字生成方面: 模型选择图片 2.1,输入提示词(可参考案例提示词)。 案例提示词如:金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风;巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”;巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画;巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 “城市狂想”图片制作方面: 为大家提供了猫叔之前写的一段提示词的 prompt,生成了三条 prompt: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1。 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1。 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1。 为大家直接生成了 1 组共 12 段提示词,可直接使用。使用时注意,以下提示词可在悠船和 MJ 中使用,其他平台工具请复制后删除包含“”以后的部分。 星流一站式 AI 设计工具方面: 在 prompt 输入框中可输入提示词、使用图生图功能辅助创作。 提示词用于描绘画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 写好提示词的方法: 预设词组:小白用户可点击提示词上方官方预设词组进行生图,提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。
2025-01-07
模型成本
以下是关于模型成本的相关信息: GPT3.5 系列: gpt3.5turbo:功能强大,针对聊天优化,成本仅为 textdavinci003 的 1/10,最大 Token 数 4096,训练数据截至 2021 年 9 月。 gpt3.5turbo0301:gpt3.5turbo 2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。 textdavinci003:能完成任何语言任务,支持在文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。 textdavinci002:与 textdavinci003 类似,使用监督微调训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。 codedavinci002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。 其他模型供应商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用,接口响应速度快,指令灵活性差些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本 0.05 元/千 tokens。 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用,指令灵活性丰富,接口调用入门流程长,密钥安全性高,调用成本 0.008 元/千 tokens,训练成本 0.03 元/千 tokens。 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本 0.005 0.015 元/千 tokens,输出成本 0.02 0.07 元/千 tokens。 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在 0.05 0.1 元/次。 Claude 3 系列: Opus:最智能,擅长处理复杂任务,输入成本 15 美元/百万 token,输出成本 75 美元/百万 token,上下文窗口 200K token(特定用途 1M token 可用,详情咨询),应用场景包括任务自动化、研发、策略分析等。 Sonnet:平衡,应用场景包括客户服务、内容审核、优化物流等,优势在于速度和成本效益。 此外,Claude 3 系列在设计上注重安全和可靠,持续改进减少模型偏见,提高公正性和中立性,被评定为 AI 安全等级 2(ASL2)。
2025-01-31
layer_xl_bg2ble.safetensors,layer_xl_transparent_conv.safetensors,vae_transparent_encoder.safetensors这一类是大模型,还是Lora?
layer_xl_bg2ble.safetensors、layer_xl_transparent_conv.safetensors、vae_transparent_encoder.safetensors 这类文件可能是大模型的一部分,也可能是 Lora 模型。 在 AI 模型中: 基础模型(英文名 Checkpoint)是生图必需的,任何生图操作必须要选定一个基础模型才能开始。 Lora 是低阶自适应模型,可以理解为基础模型的小插件,生图时可有可无,但在控制面部、材质、物品等细节方面有明显价值。 同时,VAE 是个编码器,功能类似于滤镜,可调整生图的饱和度。
2025-01-31
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28