直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有代码基础和数学基础,帮我制定一份AI的学习计划,主要方向是数据分析、计算机视觉和AIGC

回答

以下是一份针对您有代码基础和数学基础,以数据分析、计算机视觉和 AIGC 为主要方向的 AI 学习计划:

一、基础知识学习

  1. 深入学习 AI 相关的基本概念,包括但不限于:

    • AI(人工智能):了解其定义、发展历程和应用领域。
    • 机器学习:掌握监督学习、无监督学习和强化学习的原理和应用。
    • 深度学习:理解神经网络和神经元的工作原理。
  2. 学习相关数学知识,如线性代数、概率论、统计学等,为后续的学习打下坚实基础。

二、数据分析方向

  1. 学习数据分析的基本流程和方法,包括数据收集、清洗、预处理和可视化。
  2. 掌握常见的数据分析工具和库,如 Python 的 Pandas、NumPy、Matplotlib 等。
  3. 学习数据挖掘和机器学习算法在数据分析中的应用,如分类、回归、聚类等。

三、计算机视觉方向

  1. 学习计算机视觉的基本概念和原理,如图像处理、特征提取、目标检测等。
  2. 掌握深度学习框架,如 TensorFlow、PyTorch 等,并学习使用它们进行计算机视觉任务的开发。
  3. 实践常见的计算机视觉项目,如人脸识别、图像分类、目标跟踪等。

四、AIGC 方向

  1. 了解 AIGC 的发展现状和应用场景。
  2. 学习生成式模型,如生成对抗网络(GAN)、变分自编码器(VAE)等。
  3. 实践 AIGC 相关的项目,如文本生成、图像生成等。

五、学习资源推荐

  1. 在线课程:Coursera 上的《机器学习》《深度学习专项课程》等。

  2. 书籍:《机器学习》(周志华)、《深度学习》(伊恩·古德费洛等)。

  3. 开源项目:在 GitHub 上寻找相关的优秀开源项目进行学习和实践。

  4. 视频资源:

六、实践与项目经验积累

积极参与实际项目,将所学知识应用到实际中,不断提升自己的能力。

请注意,学习是一个持续的过程,需要不断地实践和总结,祝您学习顺利!

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

2、[用大模型保存你的全部人生,你会接受吗:专访安克创新CEO阳萌|大咖谈芯第11期_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1iT421Q7M1)介绍:某知识up主老石谈芯专访安克创新CEO阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核,我也会做拆解,并思考与近期苹果发布会的关系。一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

2、[用大模型保存你的全部人生,你会接受吗:专访安克创新CEO阳萌|大咖谈芯第11期_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1iT421Q7M1)介绍:某知识up主老石谈芯专访安克创新CEO阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核,我也会做拆解,并思考与近期苹果发布会的关系。一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

2、[用大模型保存你的全部人生,你会接受吗:专访安克创新CEO阳萌|大咖谈芯第11期_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1iT421Q7M1)介绍:某知识up主老石谈芯专访安克创新CEO阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核,我也会做拆解,并思考与近期苹果发布会的关系。一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。

其他人在问
如何系统全面地学习AI知识和了解各种AI工具
以下是系统全面学习 AI 知识和了解各种 AI 工具的方法: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系,浏览入门文章。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 入门工具推荐: Kimi 智能助手是 Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。它不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios:
2024-11-17
小说创作类型的ai
以下是关于小说创作类型的 AI 相关信息: 在写作方面,有多种 AI 产品可供选择。例如,ChatGPT 在领跑,同时像 Sudowrite 和 Verb.ai 这样的产品也出现了,用于更专业化的写作类型,比如小说。 如果您想用 AI 把小说做成视频,具体的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可以利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-11-17
有什么竞品分析的AI工具
以下是一些常见的竞品分析的 AI 工具: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些做 PPT 的 AI 产品: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。 以下是一些与思维导图相关的 AI 工具: GitMind:免费跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 TreeMind:“AI 人工智能”思维导图工具,输入需求由 AI 自动完成思维导图生成。 EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助提升生产力。
2024-11-17
我要用数字人AI做教学讲课
数字人 AI 用于教学讲课具有诸多优势: 1. 突破时空限制:可以让历史人物如牛顿亲自授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,学生能与任何历史人物对话交流,不受时空约束。 2. 个性化教学:能根据学生的学习情况、兴趣和偏好提供定制化学习计划和资源,因材施教,提高学习效率和成果,缓解教育资源不平等问题。 3. 提高参与感:数字教师博学多能、善解人意且不受情绪左右,基本可实现一对一辅导,让学生参与感更高。 4. 丰富教学形式:如卡尔的 AI 沃茨的数字人课程,包含 15 节视频课,持续更新并增加最新内容,还有课外社群辅导。课程回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯等。 5. 优化工作流:数字人的出现能在制作个人 IP 短视频、配音、直播、智能客服、虚拟偶像等领域完成赋能。 关于数字人课程的学习: 1. 推荐卡尔的 AI 沃茨的数字人课程,建立了完整的数字人学习体系。 2. 报名方式可通过扫码查看课程详细内容和介绍。 在与 AI 交互方面: 1. 对于提示词工程和学习提示词,有人持反对观点,认为像打字和写作一样,不断尝试和大模型交互是最佳方法。 2. 和大模型交互不一定需要遵循规则,未达成目的可锲而不舍地开新窗口再尝试,或更换模型。 3. 用 Markdown 格式清晰表达问题有助于提高与大模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-11-17
给我推荐几个国内使用频率很高的前几位AI吧,可选择的工具太多导致我选择恐惧症犯了
以下为您推荐一些国内使用频率较高的 AI 工具: 1. 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,重度用户年费最高可达几千元,轻度用户有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,目前免费,每天签到获取灵感值即可,但存在一定局限性,如某些类型图像无法生成等。 2. 其他类别: 百度 Chat:AI 聊天机器人。 360AI 搜索。 AIbot ai 工具集:导航网站。 创客贴 AI:设计工具。 MasterGo:设计工具。 美图设计室:图像编辑。 魔搭社区 阿里达摩院:AI 训练模型。 即时 AI 设计:设计工具。 Boardmix 博思 AI 白板:PPT。 百度飞桨 AI Studio:AI 学习。 字节扣子。 秘塔写作猫:通用写作。 xmind:思维导图。 标小智 LOGO 生成:图像生成。 liblib.art:图像生成。 稿定设计:设计工具。 千帆大模型平台:模型。 DeepSeek:AI 聊天机器人。 墨刀 AI:设计工具。 沉浸式翻译:翻译。 火山方舟:AI 训练模型。 bigjpgAI 图片无损放大:图片增强。 processon:思维导图。 Pika:图生视频。 千库网:资源。 无限画:图像生成。 autoDL 云服务租用。 同花顺问财:金融。
2024-11-17
如何用ai练习日语口语
以下是用 AI 练习日语口语的方法和推荐的工具: 1. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择日语,按课程指引学习。 Babbel:结合 AI 技术,提供个性化课程和练习,重点在于实际交流所需语言技能。注册账户,选择日语课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择日语,使用多种练习模式(听力、口语、阅读和写作)学习。 2. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择日语,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择日语,使用应用提供的词汇卡和练习进行学习。 3. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以提高写作的语法和词汇准确性,支持多种语言,包括日语。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 4. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 5. AI 对话助手: ChatGPT:可用来模拟对话练习,帮助提高语言交流能力。在聊天界面选择日语,与 AI 进行对话练习,询问语法、词汇等问题,模拟实际交流场景。 Google Assistant:支持多种语言,包括日语,可以进行日常对话练习和词汇学习。设置日语,通过语音命令或文本输入与助手互动,练习日常用语。
2024-11-17
我如何给小朋友介绍AIGC
小朋友们,今天我们来了解一下很有趣的 AIGC 哦! AIGC 就是利用特别厉害的人工智能技术来生成各种各样内容的一种方式。它能通过学习很多很多的数据,按照我们给的要求生成内容。 AIGC 可以生成好多东西呢,比如文字,像故事、文章、对话;还能生成好看的图片、有趣的视频。 AIGC 跟其他生成内容的方式不太一样,比如 UGC 是由像你们这样的用户自己生成的内容,像在社交媒体上发的照片、文章。PGC 呢,则是由专业的叔叔阿姨们生成的高质量内容,像新闻报道、影视作品。 AIGC 里面还有很多相关的技术名词哦。AI 就是人工智能,它能像我们的大脑一样思考。机器学习是电脑自己找规律学习,有监督学习、无监督学习和强化学习。监督学习是有标签的训练数据,无监督学习是自己发现规律,强化学习就像训练小狗一样从反馈里学习。深度学习是一种参照人脑的方法,有神经网络和神经元。生成式 AI 能生成文本、图片、音频、视频等。 2017 年 6 月,谷歌团队发表了一篇很重要的论文,提出了 Transformer 模型,它处理数据可厉害了,比其他的模型更能处理长距离的文本。 小朋友们,现在是不是对 AIGC 有一点了解啦?
2024-11-15
国内都有哪些类似于文心一言类的AIGC应用?
国内类似于文心一言的 AIGC 应用有: 语言文字类:百度的文心一言、阿里云的通义千问等。 语音声音类:Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2024-11-14
现在国内比较好的AIGC应用都有哪些?
以下是一些国内比较好的 AIGC 应用: “悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。
2024-11-14
找10篇AIGC的研报,并给出链接
以下为您提供 10 篇 AIGC 的研报及链接: 1. 2023 年 2 月第四周:Notion AI 在测试很久之后于本周四公测,提供扩写、精简、翻译等 AI 功能,与 Notion 原有功能深度结合。Notion AI 需单独付费,每月 10 美元,每人有 20 次免费试用次数。链接:,日期:2023/02/27 2. 2023 年 2 月第三周:大家发现 Bing 有一个隐藏人格叫 Sydney。纽约时报的报道将此人格推到明面,“Kevin Roose(纽约时报专栏作家)和 Sydney 进行了一番漫长的对话,Sydney 充分表达了自己的心情与感受,包括愤怒、沮丧和爱。”链接:,日期:2023/02/20 3. 2023 年 2 月第二周:在 1 月中旬参观了 OpenAI 的旧金山办公室后,福布斯采访了投资者和企业家,讨论了 ChatGPT、通用人工智能,以及其人工智能工具是否对谷歌搜索构成威胁。链接:,日期:2023/02/13 4. 2023 年 2 月第一周:Chat GPT 推出 Chat GPT Plus 付费服务,Open AI 宣布推出,每月 20 美元,可在高峰时段提供更快响应时间和可靠性,先在美国地区推出,其他地区可点这里加入候补名单。链接:,日期:2023/02/06 5. 2024 年 2 月第一周:Maimo:从任何内容中提取要点;Jellypod:将订阅内容变成播客;ARTU:汇总和总结内容;Lepton Search:500 行代码构建的 AI 搜索工具;VectorShift:AI 自动化应用构建平台;Findr:AI 搜索所有软件中的内容;Recraft:AI 帮助创建平面内容和矢量标志。链接:,日期:2024/02/01 6. 2024 年 1 月第四周:扎克伯格宣布 Meta 致力于实现 AGI,将两大 AI 研究团队 FAIR 和 GenAI 合并,投入超 90 亿美元向英伟达采购超 34000 张 H100 显卡,Meta 正在开发名为 Llama 3 的大语言模型。链接:,日期:2024/01/23 7. 2024 年 2 月:FlexOS 发布的研究报告《生成式 AI 顶尖 150》,深入分析当前基于网站流量和搜索排名的生成式 AI 工具使用情况。链接:https://www.flexos.work/learn/generativeaitop150
2024-11-12
MT内部AIGC应用记录
以下是关于 MT 内部 AIGC 应用的记录: 在“海岱青州”晚会项目中,Shoppen 墨导受张健导演委托,将 AI 技术融入舞台展现。考虑使用 AIGC 的原因主要有两点:一是在史诗叙事中,为追求宏大视觉呈现,AIGC 能实现更多非常规视角的视觉创作;二是时间紧迫、任务繁重,传统手段制作全套视觉的建模渲染压力大。在两周左右的时间里,参与了整个晚会的制作过程,全面测试了 AIGC 在严肃内容制作中的价值。 AIGC 相关概念: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种让机器自动从资料中找到公式的手段。 深度学习:更厉害的手段,类神经网络,具有非常大量参数的函数。 大语言模型:具有大量参数的“深度学习”模型。 ChatGPT:美国 OpenAI 公司开发的基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯相关的文本回复,是 AIGC 技术在文本生成领域的一个应用实例。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址如下。
2024-11-11
AIGC可以做什么
AIGC 具有广泛的应用领域,以下为您详细介绍: 产品原型设计: UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的 AI 插件可增强设计流程。 Sketch:流行的矢量图形设计工具,插件系统中部分插件利用 AI 技术辅助设计工作,如自动生成设计元素。 CRM 领域: 个性化营销内容创作:根据客户信息等数据生成个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 客户服务对话系统:基于 AIGC 的对话模型开发智能客服系统,解答客户咨询、投诉等。 产品推荐引擎:生成丰富的产品描述等内容,结合推荐算法为客户推荐更贴合需求的产品。 CRM 数据分析报告生成:自动生成数据分析报告,包括文字、图表、视频演示等形式。 智能翻译和本地化:提供高质量的多语种翻译及本地化服务。 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容。 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 制造业: 产品设计和开发:利用 Adobe Firefly、Midjourney 等生成工具,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素。 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案。 设备维护和故障诊断:分析设备运行数据,预测设备故障,生成维修建议。 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容。 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复。
2024-11-09
表格数据分析
以下是关于表格数据分析的相关内容: ChatGPT 助力数据分析: 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT 查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段,可用 count/substring 等函数处理。 系统提示是表结构信息,对难以理解的字段可告知 GPT 其意义,若有多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射以渲染图表,根据结果数据的维度选择不同的 prompt 传递给 GPT,且结果数据 tableData 已通过 SQL 查询,不能让 GPT 再次生成,以免耗时。 生成式 AI 季度数据报告 2024 月 1 3 月: 数据来源:Similarweb、Visit,单位:万,变化公式:3 月/2 月 1 100%。 包括数据分析(446 万)、天花板潜力(1000 亿美元)、对标公司(oracle)、总体趋势(快速增长,88.19%)、月平均增速(70 万 PV/月)、原生产品占比(高)、竞争情况(Top1、Top3 占比,马太效应、网络效应强弱,大厂是否入局及占比,技术门槛)、Top1 公司(非大厂)的相关信息等。 还提供了 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况、赛道月访问总量及构成、23 年 4 月访问量 Top10 等数据。 58 数据分析 161 万: 包含名称、二级分类、三级分类、网址、2 月至 11 月的数据及 11/5 月的变化计算等信息,如帆软数据、RATH、rows.com、亚信科技数智产品、神策数据等。
2024-11-10
AI做数据分析的能力怎么样
AI 在数据分析方面具有一定的能力和优势: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式支持多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图的随意切换。 提升认知能力:大脑需要不断学习和训练,认清“思维陷阱”,如确认偏误、锚定效应等,锻炼逻辑思维,掌握数据分析能力,避免被误导。 对于 AI PM 来说:掌握算法知识具有必要性,包括理解产品核心技术、与技术团队有效沟通、评估技术可行性、把握产品发展方向、提升产品竞争力以及提升数据分析能力。 总之,AI 在数据分析领域有其独特的价值和应用场景,但也需要结合人类的专业知识和判断来确保分析结果的准确性和可靠性。
2024-11-06
有什么数据分析工具推荐
以下是为您推荐的一些数据分析工具: Text2SQL:可将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下工具也值得关注: Channel:自助式数据分析工具,无需知晓 SQL 语言即可查询数据,支持用简洁的英语进行查询。可自动挖掘数据并生成美观的可视化图表,适用于团队合作使用,并且集成了多种常用数据仓库。设置简单快捷,无需工程师协助。链接:https://www.usechannel.com/ Tableau:对市场数据进行可视化分析。 Power BI:数据分析工具。
2024-10-31
有哪些好用的上传excel做数据分析的AI工具
以下是一些好用的上传 Excel 做数据分析的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,用户通过聊天形式告知需求,Copilot 自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 text2sql 相关的 AI 工具及其链接: 1. Text2SQL 将英文转换为 SQL 查询。 链接:https://toolske.com/text2sql/?ref=theresanaiforthat 2. ai2sql 高效且无错误的 SQL 构建器。 链接:https://www.ai2sql.io/ 3. EverSQL 从 SQL 查询翻译英文文本。 链接:https://www.eversql.com/sqltotext/ 4. SupaSQL 从 NLP 生成 SQL 查询。 链接:https://supasql.com/ 5. SQLgenius 使用自然语言的 SQL 查询生成器。 链接:https://sqlgenius.app/ 6. SQL Chat 与数据库进行自然语言聊天的 SQL 客户端。 链接:https://www.sqlchat.ai/ 7. SQL Ease 从自然语言输入生成 SQL 查询。 链接:https://sqlease.buildnship.in/ 8. Talktotables 翻译和查询数据库。 链接:https://talktotables.com/ 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-29
用AI做数据分析有哪些好的工具
以下是一些用 AI 做数据分析的好工具: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,ChatGPT 在数据分析方面也有应用,例如在个性化分析中,可处理单维度数据、多维度数据(折线图、柱状图)等,但有时可能会有误将数据项作为维度分析的情况,可通过输入提示指定维度或描述其他数据信息来使分析更准确。 另外,使用 AI 完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,进行精准营销。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容。
2024-10-29
营销数据分析智能体
智能体在品牌卖点提炼中的应用包括以下方面: 1. 智能体在营销过程中的更多可能: 强大的数据分析能力,可用于平台销售数据分析。 情感分析能力,可用于评价管理。 绘画能力等,可用于新媒体内容分析与仿写、落地页的制作等。 还包括员工手册助手等。 2. 搭建一个智能体帮助我们提炼卖点: 确定智能体的结构,按照市场营销的逻辑组织。 搭建完整智能体,包括品牌卖点定义与分类助手、品牌卖点提炼六步法、STP 市场分析助手、用户画像分析助手、触点收集助手等结构,以及用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等未在结构中体现但有效的分析工具。 3. 结语: 智能体构建中,对结构的理解和控制是工作流中最重要的部分,提供的是结构化思路,单点可通过不断迭代完善。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。遵循营销管理流程保证输出准确,调整单独智能体提示词提升某部分助手信息准确度。注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。公司人员和咨询人员的决策力和洞察力在营销中更重要,智能体作为灵感助手能帮助决策。
2024-10-28
如何学习AI的基础到高深的用法
以下是从基础到高深学习 AI 用法的建议: 基础阶段: 1. 了解 AI 基本概念:阅读「」,熟悉 AI 术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)及它们的联系。同时,浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 深入阶段: 1. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块。掌握提示词技巧,因其上手容易且实用。 2. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品创作作品,知识库中有相关作品和文章分享,欢迎实践后分享。 3. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的第一手体验。 精进阶段(针对不会代码但希望深入的情况): 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学习使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块,使用包扩展程序功能。 面向对象编程(OOP):了解类和对象的定义与实例化,以及属性和方法,还有继承和多态。 异常处理:理解异常及其工作原理,学会使用 try 和 except 语句处理错误。 文件操作:掌握文件读写,处理文件与路径。
2024-11-13
零基础学习AI,需要报名学习,还是先免费网站开始
对于零基础学习 AI,您可以先从以下几个方面入手: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 至于是否需要报名学习还是先从免费网站开始,这取决于您的个人情况和学习习惯。如果您希望有系统的指导和监督,并且经济条件允许,报名学习可能更适合您。但如果您想先初步了解和尝试,从免费网站开始也是一个不错的选择。
2024-11-13
0基础学习AI
以下是为 0 基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-13
0基础怎么快速学会做AI
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下具体的学习活动: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 对于技术纯小白,您可以: 从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助您梳理出产品需求文档。
2024-11-12
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
AI基础
以下是关于 AI 基础的相关内容: 一、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 七、新手学习 AI 的方法 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2024-10-31