Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有代码基础和数学基础,帮我制定一份AI的学习计划,主要方向是数据分析、计算机视觉和AIGC

Answer

以下是一份针对您有代码基础和数学基础,以数据分析、计算机视觉和 AIGC 为主要方向的 AI 学习计划:

一、基础知识学习

  1. 深入学习 AI 相关的基本概念,包括但不限于:

    • AI(人工智能):了解其定义、发展历程和应用领域。
    • 机器学习:掌握监督学习、无监督学习和强化学习的原理和应用。
    • 深度学习:理解神经网络和神经元的工作原理。
  2. 学习相关数学知识,如线性代数、概率论、统计学等,为后续的学习打下坚实基础。

二、数据分析方向

  1. 学习数据分析的基本流程和方法,包括数据收集、清洗、预处理和可视化。
  2. 掌握常见的数据分析工具和库,如 Python 的 Pandas、NumPy、Matplotlib 等。
  3. 学习数据挖掘和机器学习算法在数据分析中的应用,如分类、回归、聚类等。

三、计算机视觉方向

  1. 学习计算机视觉的基本概念和原理,如图像处理、特征提取、目标检测等。
  2. 掌握深度学习框架,如 TensorFlow、PyTorch 等,并学习使用它们进行计算机视觉任务的开发。
  3. 实践常见的计算机视觉项目,如人脸识别、图像分类、目标跟踪等。

四、AIGC 方向

  1. 了解 AIGC 的发展现状和应用场景。
  2. 学习生成式模型,如生成对抗网络(GAN)、变分自编码器(VAE)等。
  3. 实践 AIGC 相关的项目,如文本生成、图像生成等。

五、学习资源推荐

  1. 在线课程:Coursera 上的《机器学习》《深度学习专项课程》等。

  2. 书籍:《机器学习》(周志华)、《深度学习》(伊恩·古德费洛等)。

  3. 开源项目:在 GitHub 上寻找相关的优秀开源项目进行学习和实践。

  4. 视频资源:

六、实践与项目经验积累

积极参与实际项目,将所学知识应用到实际中,不断提升自己的能力。

请注意,学习是一个持续的过程,需要不断地实践和总结,祝您学习顺利!

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

2、[用大模型保存你的全部人生,你会接受吗:专访安克创新CEO阳萌|大咖谈芯第11期_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1iT421Q7M1)介绍:某知识up主老石谈芯专访安克创新CEO阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核,我也会做拆解,并思考与近期苹果发布会的关系。一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

2、[用大模型保存你的全部人生,你会接受吗:专访安克创新CEO阳萌|大咖谈芯第11期_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1iT421Q7M1)介绍:某知识up主老石谈芯专访安克创新CEO阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核,我也会做拆解,并思考与近期苹果发布会的关系。一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

2、[用大模型保存你的全部人生,你会接受吗:专访安克创新CEO阳萌|大咖谈芯第11期_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1iT421Q7M1)介绍:某知识up主老石谈芯专访安克创新CEO阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核,我也会做拆解,并思考与近期苹果发布会的关系。一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。

Others are asking
如何快速入门AI工具
以下是快速入门 AI 工具的一些建议: 1. 对于普通人来说,对 AI 最好的直观初接触有两个方面: 最低成本能直接上手试的工具是什么,自己能否亲自尝试。 现在最普遍/最好的工具是什么,能达到什么效果。 2. 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。 3. 为了让普通人更直观地马上上手,可选择以下几种工具展开说明:聊天工具、绘画工具、视频工具、音乐工具。 4. 对于超出自己理解范围内的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。 5. 在面向父母的“AI 布道”活动中发现,因“AI 工具”功能强大能做无数事情,反而在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最好方式,不论是什么人群。 6. 最后,如果想交流并一起在 AI 路上探寻,欢迎戳 。
2025-02-17
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
国内有什么免费好用的文字转图片AI吗?
目前国内免费好用的文字转图片 AI 工具包括: 1. DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多相关工具。但需注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
小红书与AI的结合
以下是关于小红书与 AI 结合的相关内容: 汉青老师曾分享,生成式 AI 的内容与传统社交媒体内容共存,如小红书、抖音、微信等。短期内可能因新鲜感获流量红利,长期人们仍在意高质量内容。我们掌握了多种先进工具,但应慢下节奏感受真实世界和身边普通人。目前还没想好具体如何与 AI 结合。 有朋友的朋友圈题材提到:同一条街道上,年轻女孩在街上,孤独老人在围墙里;一张照片传递了两种稳固关系和一种爱意;有人认为电商快递外卖的优势是劳动力,图中女孩的状态令人垂头丧气。 还有作者将 AI 与大理石这一古典媒介结合,认为当历史厚重与科技轻盈相遇会激发艺术可能。 此外,2024 年 11 月 30 日举办的 Show Me 扣子 AI 挑战赛大消费行业专场活动中,介绍了扣子平台最新公测的各项能力。活动旨在推动 AI 技术在大消费领域的应用与创新,为内容生产者寻求更多变现可能。获奖作品如“买买买!产品买点提炼神器强化版”专注于市场营销领域,能提炼卖点、生成营销文案等。
2025-02-17
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13
想在手机上通过宠物照片给宠物建模,是宠物可以有一些动态性,需要怎么做?利用 AIGC 能快速的实现吗?
在手机上通过宠物照片给宠物建模并实现一定的动态性,可以考虑以下几种方式: 1. 利用 3D 引擎:目前有一些公司提供通过手机摄像头快速创建虚拟人身体的服务,例如 NextHuman。不过,3D 引擎在拟真程度高的同时,定制化成本也较高。 2. 借助 AIGC:虽然 AIGC 省去了建模流程,能直接生成数字人的展示图片,但可能存在数字人难以保持 ID 一致性、帧与帧连贯性不佳等问题。典型的相关项目有 wav2lip等。但需要注意的是,如果对模型真实度要求较高,AIGC 方式可能不太理想,因为算法发展很快,未来可能会有更好的连贯度生成方式。 目前利用 AIGC 来快速实现可能存在一些挑战,但随着技术的发展,未来有可能更便捷高效地达成您的需求。
2025-02-13
AIGC工程师
以下是为您整理的 AIGC 相关招聘信息: 猿印教育 AIGC 图像生成算法工程师/专家(北京五道口附近) 简历请发送至:stephen.wang@yyinedu.com 岗位职责: 面向 AIGC 领域,结合应用场景,开发针对性图像生成解决方案。 负责模型的部署和推理性能优化,确保模型在实际应用中的高效性和稳定性。 持续关注最新的技术发展和业界趋势,积极推动团队技术水平的提升,并将新技术应用到实际项目中。 任职要求: 计算机相关专业本科及以上学历,具备扎实的计算机基础知识。 熟练掌握 Python 语言,熟悉至少一种主流深度学习框架(TensorFlow/Pytorch 等)。 对深度学习和计算机视觉领域的基础理论和方法有深入理解,熟悉 DDPM,DDIM,Stable Diffusion 原理,了解 Dreambooth,ControlNet 等可控生成技术。 具有强烈的技术兴趣和钻研精神,具备良好的学习能力、沟通能力和团队合作精神。 数字银行 AIGC 产品经理(深圳) 请直接飞书联系@Eason 任职要求: 相信 AIGC:有过第一次用 chatgpt 时的兴奋,记得去年那个 AI 疯狂的 3 月份,熬夜看过 gpt4、copilot 的发布会,想过各种办法搞定 plus 账号,现在在翘首以盼 gpt5。 喜欢用:用过各种 AIGC 应用,如 GPT4,newbing,Kimi,Perplexity,Suno 等等。看到新的爆款产品,就会第一时间玩一玩。 能上手:可以简单的上手,不限于调用 api 做个小 demo,会写复杂的提示词,做一个简单的 RAG 应用,文生图、视频,微调模型等。 岗位职责: 构建赋能海量用户的大模型工程化产品,帮助某数字银行塑造技术领先性。 探索和设计工程化产品,来支持更快的 AI 原生应用构建(类似 Langchain,Llamaindex 等等,或者由您亲自来颠覆它们,做一个 Langxx,Llamaxx)。 在重点业务场景中深入探索大模型的应用落地,用最新的理念,做出真正能在海量金融业务场景中跑起来的应用(把类似 MetaGPT,AutoGen,Advanced RAG 真正落地,或者创造自己的 multi agent 应用)。 此外,3 月 2 日接龙中涉及 AIGC 相关人员的工作内容包括: 雯琋(Vinci)AIGC 不会编程但会鼓励编程。 AI 译文打杂文案。 AI 译然,AI 视频相关的都会一点,就是完全不会做网站。 Stanico,产品、运营、prompt。
2025-02-10
AIGC
AIGC 是利用 GenAI(生成式 AI)创建的内容。GenAI 能够从已有数据中学习并生成新的数据或内容。 AIGC 存在多种法律与道德风险: 1. 知识产权方面: 由于与输入数据的关联性,可能造成作品、专利、商标侵权、不正当竞争、侵犯商业秘密等问题。 存在是否构成侵犯著作权的争议,根源在于 GenAI 系统的训练方式。 对于 AIGC 产品是否构成著作权保护的产品以及著作权归属问题,目前存在需要重点探讨的方面。目前中国法律体系下,著作权主体仅限于自然人、法人或者非法人组织,AIGC 是否构成作品尚无法律明确规定,但我国已有认定 AIGC 享有著作权的先例。 2. 其他应用风险: AIGC 本身可能被滥用,产生误导性虚假信息,被用于不法目的。 面临社会伦理风险,可能延续和放大人类作品中的歧视、偏见,生成不当言论,被用于网络攻击、网络炒作和不正当商业营销等。 我国针对 AIGC 的应用出台了一系列法律法规进行规范,如《网络安全法》《数据安全法》《个人信息保护法》《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《网络音视频信息服务管理规定》等。
2025-02-09
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 AIGC 的应用领域广泛,包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域。 AIGC 作为一种强大的技术,在赋能诸多领域的同时,也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
2025-02-07
aigc
AIGC(AIGenerated Content)是利用GenAI(生成式AI)创建的内容。GenAI能够从已有数据中学习并生成新的数据或内容。 AIGC存在多种法律与道德风险: 1. 知识产权方面: 由于AIGC与输入数据的关联性,可能造成作品、专利、商标侵权、不正当竞争、侵犯商业秘密等问题。 关于AIGC产品是否构成著作权保护的产品以及著作权归属存在争议,目前中国法律体系下,著作权主体仅限于自然人、法人或者非法人组织,AIGC是否构成作品尚无法律明确规定,但我国已有认定AIGC享有著作权的先例。 2. 其他应用风险: AIGC可能被滥用,产生误导性的虚假信息,被用于诈骗、恐吓、诽谤等不法目的。 AIGC面临社会伦理风险,可能延续和放大人类作品中的歧视、偏见,生成不当言论,还可能被用于编写恶意软件进行网络攻击、网络炒作和不正当商业营销等。 我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成共同监管形势。《网络音视频信息服务管理规定》也对相关新技术新应用提出了监管要求。 AIGC主要分为语言文本生成、图像生成和音视频生成,在多个领域有广泛应用,但也存在内生风险、数据隐私问题等。
2025-02-07
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17
如果我想做数据分析,用什么AI不用翻墙,且免费
以下是一些不用翻墙且免费的可用于数据分析的 AI 工具: 1. Mistral 发布的全新聊天应用:基于 Pixtral Large 124B 多模态模型,支持网络搜索、写作画布与 Flux Pro 图像生成功能。亮点包括网络搜索工具获取最新信息、写作画布功能适合文档创作与协作、高质量图像生成工具 Flux Pro 支持免费使用。在线体验网址: 。 2. 亚马逊实验环境平台:安全性和体验不错,在国内不用翻墙就可体验,对有云需求和免费体验模型的伙伴有帮助。目前加入该平台的模型厂商包括 AI21 Labs、Anthropic、Cohere、Meta、Stability AI、Mistral 和 Amazon。但该测试网址目前只能记住添加的模型,无法像 Claude、GPT 网页一样记住过往交流信息。 在进行数据分析时,您可以利用 AI 进行信息收集,例如与权威网站结合获取关键数据,辅助提取结构化表格数据或编写抓取程序。针对报告需求将内容拆分,避免 AI 单次处理任务过长。借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。通过整理数据,利用 AI 辅助分析后撰写报告初稿,不过最终内容需人工主导校验,避免误导性结论。
2025-02-16
有什么适合销售的AI数据分析及方案梳理的工具
以下是一些适合销售的 AI 数据分析及方案梳理的工具: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注关键方面。 2. Clari:专门从事智能收入运营的软件,以创建高度准确的收入预测能力闻名,能统一各种来源数据并以易理解方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 使用 AI 完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助卖家在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 以下是部分 AI 应用示例: 1. 图虫网:AI 摄影作品销售平台,利用图像识别、数据分析技术,为摄影爱好者提供作品销售渠道,市场规模达数亿美元。 2. 网易云音乐音乐人平台:AI 音乐作品发布平台,运用音频处理、数据分析技术,为音乐创作者提供作品发布等服务,市场规模达数亿美元。 3. 好好住 APP:AI 家居用品推荐平台,通过数据分析、自然语言处理技术,根据用户需求推荐家居用品,市场规模达数亿美元。 4. 东方财富网投资分析工具:AI 金融投资分析平台,借助数据分析、机器学习技术,分析金融市场,提供投资建议,市场规模达数十亿美元。
2025-02-15
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身的使用情况,输入一句话可分析用户配置图表相关的数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL 后执行,将数据传给 GPT 分析,最后返回分析结论和建议及结果数据给前端渲染图表。 个性化分析:平台上支持上传数据,可提供数据信息(非必填),自定义分析用户自己上传的数据。用户上传文件,前端解析后传给 GPT 分析,后续步骤与 SQL 分析一致。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 。 报告目录包含总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等,并附有重要榜单。 作者介绍及各自负责的工作,如郎瀚威 Will 是 AI 数据分析&出海社媒增长 GPTDAO 首席分析师,负责数据准备、分类标准图谱准备等。
2025-02-12
数据分析相关的AI应用
以下是关于数据分析相关的 AI 应用的介绍: ChatGPT 助力数据分析: 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身的使用情况,输入一句话可分析用户配置图表相关的数据。 个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据。分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图,可随意切换。 个性化分析示例:包括单维度数据、多维度数据(折线图和柱状图)。有时 AI 会误将数据项作为维度分析,可输入提示告诉它用哪个字段作为维度,也可以描述其他数据信息,使分析更为准确。 总结和展望:ChatGPT 在数据分析领域具有广泛应用前景,在提高效率、降低技能门槛和支持决策等方面有显著优势。但案例分析结果可能简单,真正接入业务可定制多种分析模板,增加分析多样性。实际业务中处理大量数据需指定允许查询或解析的字段并校验结果,做到前后两次校验更可控。随着技术进步,相信会为数据分析带来更多创新和突破。 100 个 AI 应用中的部分数据分析相关应用: AI 游戏道具推荐系统:利用数据分析和机器学习,根据玩家需求推荐游戏道具,已有游戏内商城推荐功能,市场规模达数亿美元。 AI 天气预报分时服务:通过数据分析和机器学习,提供精准的分时天气预报,如彩云天气分时预报,市场规模达数亿美元。 AI 医疗病历分析平台:借助数据分析和自然语言处理,分析医疗病历辅助诊断,如医渡云病历分析系统,市场规模达数十亿美元。 AI 会议发言总结工具:运用自然语言处理和机器学习,自动总结会议发言内容,如讯飞听见会议总结功能,市场规模达数亿美元。 AI 书法作品临摹辅助工具:基于图像识别和数据分析,帮助书法爱好者进行临摹,如书法临摹软件,市场规模达数亿美元。
2025-02-08
如何利用 AI辅助数据分析
利用 AI 辅助数据分析可以通过以下方式实现: 1. SQL 分析: 用户描述想分析的内容,后台连接数据库。 附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 不能通过。 校验通过后执行 SQL 返回结果数据,再将数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析: 用户上传文件,如有需要可以简单描述数据、字段意义或作用辅助分析。 前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与 SQL 分析一致。 此外,利用 AI 技术来辅助写作课题可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-02-08
零基础,如何开始学搭建
对于零基础学习搭建,以下是一些建议和相关资源: 从网站搭建方面,您可以参考以下直播内容: 大雨将介绍软件安装情况并分享零基础搭建可修改网站的目标。在直播中,大雨会先介绍需要下载的东西并去转发,还会询问观众编程基础、学习目标等。当天目标是搭建网站并修改,目的是降低编程难度。 大雨介绍了自己的职业背景,包括曾在央企做架构师、外企做咨询顾问、互联网公司产品经理,现在运营公众号。他提到去年开始认识一些人,上个月在切磋大会后开始做 AI 编程相关的事,表示做编程不是为成为程序员,而是提高日常工作学习效率,还提及后续的共学安排。 共学搭建网站部分,主要围绕搭建自己网站所需的账号注册展开,包括 GitHub 与 Radio 账号注册流程。 关于 Stable Diffusion 方面,您可以在知乎上查看以下教程: 深入浅出完整解析 Stable Diffusion(SD)核心基础知识,涵盖系列资源、核心基础原理、核心网络结构解析、搭建使用推理流程、经典应用场景、训练自己的 AI 绘画模型等多个方面。 如果您想搭建 AI 微信聊天机器人,可以参考以下内容: 纯 GPT 大模型能力的微信聊天机器人搭建,重点是修改 dockercompose.yml 文件中的具体配置来串联微信号和已创建好的 AI 机器人。配置时需留意相关参数,如私聊或群聊的触发前缀、群组自动回复的配置等。
2025-02-16
配置“DeepSeek-R1”模型的 API key:基础 URL 为 https://ark.cn-beijing.volces.com/api/v3,填好之后点击保存,关掉提醒弹窗。请对于这一步进行细节说明
以下是配置“DeepSeekR1”模型的 API key 的详细步骤: 1. 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台)。 2. 创建一个接入点:点击在线推理创建推理接入点。 3. 为接入点命名为“DeepSeekR1”。如果出现“该模型未开通,开通后可创建推理接入点”的提示,点击“立即开通”,勾选全部模型和协议,一路点击开通(免费)。如果无提示则直接到第 5 步,点击确认接入。 4. 确认以下无误后,点击“确认接入”按钮。 5. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”,复制这个推理点的 ID 放到微信里保存。 6. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。如果已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】,复制好之后,放到微信里保存。 7. 也可以使用其他插件,下面为举例示意使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 8. 打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 9. 基础 URL 填写:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 10. 配置完成。
2025-02-15
如何零基础入门
以下是零基础入门 AI 的一些建议: 1. 学习 Cursor: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱如 google/github/163/qq 邮箱,接受二维码登录。 安装中文包插件。 参考相关文章: 在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求。 2. 成为 AI 提示词工程师: 岗位技能要求包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 零基础小白学习建议:找网上的基础课程,看科普类教程,阅读 OpenAI 的文档以理解参数作用。 推荐练手的 Prompt 工具和相关教程文档。 3. 学习 Stable Diffusion: 可参考 Nenly 发布的零基础入门课及配套学习文档。 了解安装攻略,包括如何安装、启动软件。 下载课程内提及的模型文件、扩展插件及所需素材。
2025-02-14
零基础如何学习AGI
对于零基础学习 AGI,以下是一些建议和相关学习资源: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始,麦橘分享的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始,梦飞分享的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始,银海分享的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始,南墙分享的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。 3. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-13
我是AI小白,希望到这里学习AI基础知识
以下是为您整理的 AI 基础知识学习内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习的定义及其之间的关系,以及其主要分支和联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 7. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 8. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 9. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-12
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12