直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

可以找最新研究方向论文的智能体

回答

以下是关于具身智能的相关信息:

具身智能是人工智能领域的一个子领域,强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。

其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。

具身智能需要具备感知、决策和执行三种核心能力,执行能力是技术难点,涉及硬件设计,从执行角度来说,具身智能体主要分为移动和操作两大能力。在移动方面,如二足机器人、四足机器狗、轮式机器人在各种地形下实现鲁棒的移动仍是前沿学术问题。

相关研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别。

相关论文如《Catalyzing next-generation Artificial Intelligence through NeuroAI》,链接为:https://www.nature.com/articles/s41467-023-37180-x 。

具身智能的测试如 Coffee test:一台机器需要进入一个普通的美国家庭,并弄清楚如何煮咖啡:找到咖啡机,找到咖啡,加水,找到一个杯子,然后通过按下适当的按钮来煮咖啡。网址:https://analyticsindiamag.com/turing-test-is-unreliable-the-winograd-schema-is-obsolete-coffee-is-the-answer/ 。

此外,DeepMind 开发出可以向人类学习的人工智能,Nature 发表了相关研究成果,研究人员在 3D 模拟环境中使用神经网络和强化学习,展示了 AI 智能体如何在没有直接从人类那里获取数据的情况下,通过观察来学习和模仿人类的行为,被视为向人工通用智能(AGI)迈进的一大步。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

具身智能赛道爆发的前夕,我们应该了解些什么?(上)|Z研究第 5 期

对不同环境的适应性(多任务、多环境泛化)动物行为的灵活性从稀疏观察中做出一般推断的能力论文标题:《Catalyzing next-generation Artificial Intelligence through NeuroAI》论文链接:https://www.nature.com/articles/s41467-023-37180-x其他具身智能测试:Coffee test:一台机器需要进入一个普通的美国家庭,并弄清楚如何煮咖啡:找到咖啡机,找到咖啡,加水,找到一个杯子,然后通过按下适当的按钮来煮咖啡。网址:https://analyticsindiamag.com/turing-test-is-unreliable-the-winograd-schema-is-obsolete-coffee-is-the-answer/具身智能需要具备哪些基础能力?具身智能需要具备感知、决策和执行三种核心能力。执行能力是技术难点。一方面,它不像前两者有着海量的互联网数据支持;另一方面,它不仅是一个软件算法问题,还涉及到硬件设计。从执行的角度来说,具身智能体主要分为移动和操作两大能力。移动方面,无论是最近爆火的二足机器人、已经取得极大突破的四足机器狗,还是已经商业落地的轮式机器人,它们能否在各种地形下实现鲁棒的移动,依旧是前沿的学术问题。

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。

Han:基于现有能力项目应用的思考

|技术名称|应用场景|技术类型|简介|主要特点|工作原理|其他|官方网站|项目及演示|论文|Github|在线体验|附件|最后更新时间|<br>|-|-|-|-|-|-|-|-|-|-|-|-|-|-|<br>|DeepMind:开发出可以向人类学习的人工智能|这项技术的完善和应用被不同目的的人类使用也许会产生不同的结果。<br>1、善意的:学习了解进而帮助人类完成一些风险大的工作和陪伴。<br>2、恶意的:了解人类过往历史发生的战争,和人类之间的勾心斗角,形成一种对人类恶意的铺垫。|AI学习模型|Nature发表了一篇Google DeepMind的研究成果:研究人员在3D模拟环境中使用神经网络和强化学习,展示了AI智能体如何在没有直接从人类那里获取数据的情况下,通过观察来学习和模仿人类的行为。<br><br>这项研究被视为向人工通用智能(AGI)迈进的一大步。|研究背景:<br>智力包括有效的知识获取,通常依赖于文化传播——个体之间的知识转移。<br>人类智力在很大程度上依赖于这一过程,从而能够通过社会学习吸收文化知识。这种知识被称为文化,而从一个个体向另一个个体的知识传递被称为文化传播。

其他人在问
写论文的中文ai
在论文写作领域,AI 技术提供了多方面的辅助,以下是一些相关的工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有以下中文的内容仿写和文章润色工具: 1. 内容仿写: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的创作助手,提升写作效率和创作体验。 2. 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化语言表达。 Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-17
写论文的ai
在论文写作方面,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具辅助撰写,保证准确性和完整性。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:借助 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 使用 AI 来做事,特别是在写东西方面: 1. 草拟初稿:如博客文章、论文、宣传材料等,通过提示让 AI 生成,提高提示能获得更好效果。 2. 优化写作:将文本粘贴给 AI,让其改进,或按特定要求创作不同风格的草稿,使其更生动、添加例子,激发自己做得更好。 3. 完成任务:把 AI 当实习生用,让其写邮件、创建销售模板、提供商业计划下一步等。 4. 解锁自己:当被任务中的困难挑战分散注意力时,AI 能提供动力。 需要注意的是,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2024-11-17
有没有帮研究生查看课题,整理论文的ai
在研究生查看课题和整理论文方面,AI 技术提供了多种辅助工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化,协助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 对于医学课题需要 AI 给出修改意见,您可以考虑以下专业工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含多个分析板块。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 使用这些工具时,要结合自身写作风格和需求,选择最适合的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-16
大模型有哪些前沿论文
以下是一些关于大模型的前沿论文: 2017 年发布的《Attention Is All You Need》,开启了大模型发展的序幕。 2018 年 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers),创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模,参数规模在 110M 到 340M 之间。 2018 年 OpenAI 提出的 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标的方式,参数规模达 1750 亿。 2021 年 Meta 提出的 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 2024 年苹果公布的《MM1:Methods,Analysis & Insights from Multimodal LLM Pretraining》,这是一个具有高达 30B 参数的多模态 LLM 系列,探讨了不同架构组件和数据选择的重要性。
2024-11-15
可以解释论文中词汇的ai工具有什么?
以下是一些可以解释论文中词汇的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,以下 AI 工具在论文写作的其他方面也有帮助: 1. 文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具。 2. 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,提供全面英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化语言表达。 Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 选择工具时应结合具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 常受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-11-14
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常借助传感器)并采取行动(通常通过执行器)来达成目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并包含以下关键组成部分: 规划 子目标和分解:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 反思和完善:对过去行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆 短期记忆:利用模型的短期记忆进行上下文学习。 长期记忆:通过外部向量存储和快速检索实现长时间保留和回忆(无限)信息。 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 智能体的类型: 智能体可根据复杂性和功能分为以下几种类型: 简单反应型智能体(Reactive Agents):根据当前感知输入直接行动,不维护内部状态,不考虑历史信息。例如温控器,根据温度传感器输入直接控制加热器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入建模,能推理未来状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境模型。 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统,有明确目的地并规划路线以避开障碍。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。比如金融交易智能体,根据市场条件选择最优交易策略。 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有来源于 Cathy 教练和 Leah 老师的情绪力手册中的情绪主题角色扮演小游戏,这是帮助家长和孩子从源头了解、分辨、分析、处理和控制情绪的手册,包含多个相关智能体。其创作思路和理念包括需求分析、分步实现需求、提示词编写测试、GPTs 使用链接和总结等内容。
2024-11-15
中国人工智能产业研究报告
以下是为您提供的中国人工智能产业相关研究报告: 《中国生成式 AI 行业市场热点月度分析(2024 年 5 月)》:行业移动端渗透率达 12%,月活用户超 4000 万,用户画像以高学历、白领为主。可通过获取。 《中国新一代人工智能科技产业发展报告(2024)》:指出中国人工智能产业正从“极化”向“扩散”发展。报告基于 4311 家 AI 企业的数据分析,展示了中国 AI 产业的创新版图。可通过获取。 《数说安全:2024 安全大模型技术与市场研究报告》:深入探讨了 AIGC 大语言模型在网络安全领域的应用和影响。可通过获取。 《微盟&爱分析:2024 年企业 AI 应用趋势洞察报告》:通过案例分析展示了 AI 技术如何助力企业提升生产力,并预测 AI 将在企业级应用中持续拓展服务边界,同时 AI Agent 将为企业级 AI 应用带来新想象空间。可通过获取。
2024-11-15
智能字幕
以下是关于智能字幕的相关信息: 在制作数字人视频时,可通过以下步骤添加智能字幕:点击文本 智能字幕 识别字幕,然后点击开始识别,软件会自动将文字智能分段并形成字幕。完成后,可点击右上角的“导出”按钮导出视频备用。 为您推荐以下视频自动字幕工具: 1. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕,已处理 1.2 亿+视频,识别准确率接近 100%。 2. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,还可自定义视频字幕样式。 3. Arctime:能对视频语音自动识别并转换为字幕,甚至支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 4. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 此外,还有一些包含自动字幕功能的视频 AIGC 工具,如 veed.io 。 以上工具各有特点,您可根据自身需求选择最适合的。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
人工智能会取代人类吗
人工智能是否会取代人类是一个复杂且备受关注的问题。 从一些观点来看,按照目前 AI 发展的速度,在未来十几年内,人类的所有事情乃至人类这个种族有可能被 AI 完全替代。比如,当函数的参数超过兆亿级时,硅基生物可能会理解人类的所有行为及背后的意义,从而实现对人类的全面超越。 然而,也有不同的看法。虽然 AI 会优化效率,但每个工作的组成部分并非单一,人可以和 AI 更好地协同。例如放射科医生的工作,解读 X 光照片只是其中一部分,实际该岗位并未因 AI 而失业。 同时,对于人工智能的担忧还包括是否会放大人类的负面影响、导致失业以及人类毁灭等。但在技术层级上可以解决类似于社会歧视等问题,人类也有丰富的经验来控制比个体强大的事物,许多未完全控制的事物也有其价值和安全性,而且 AI 还可能成为解决气候变化和大流行病等问题的关键。 另外,ChatGPT 的崛起使人们认为大模型可能是通用的,但通用技术并非通用人工智能(强人工智能),强人工智能的定义是可以像人一样做任何智力任务。
2024-11-13
马斯克脑机接口最新发展
马斯克脑机接口的最新发展包括以下方面: 脑虎科技创始人彭雷指出脑机接口是人类脑计划的核心底层工具,能长期稳定读取大规模神经元活动信号。脑机接口是交叉领域,存在侵入式解决方案,如马斯克采用的柔性脑机结构,其柔性丝比头发细很多,通道无上限,可通过脑机信号控制物体。 2024 年 8 月 4 日,《马斯克最新 6 万字访谈!8.5 小时详解脑机接口、机器人、外星人,以及 AI 与人类的未来(一)》发布,这是马斯克第 5 次参加 Lex Fridman 播客,也是有史以来时间最长、最完整、信息量最大的一次,全球首位 Neuralink 脑机接口植入者 Noland 也参与了对话。 2024 年 1 月 30 日,马斯克宣布首例人类大脑芯片植入手术成功。
2024-11-16
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14
最新的文生视频/图生视频能力是什么
以下是关于最新的文生视频/图生视频能力的介绍: PIKA1.0 启用了全新的模型,文生视频质量大幅提升,例如输入“Cinematic,happy laughing girl in office,Pixar style”的 Prompt 能瞬间生成匹配皮克斯水平的镜头,且稳定性和神情表现出色,爆杀市面上所有的 AI 视频。在文生图方面,新模型也极其稳定。同时,图生视频效果很棒,人的一致性逆天,语义理解强,动作幅度大。此外,还有一些小技巧,如在右下角第三个设置里,负面提示(Negative prompt)可以常驻“blurry,out of focus,twisted,deformed”,提示词相关性别设 5 15 之间效果较好。 这半年来,除传统的文生视频、图生视频能力迭代外,主要技术发展还围绕着通过转绘改变画风、视频内人物识别和替换方向。在服务头部创作者方面,未来产品会强化编辑器能力和视频细节可控性,并智能化后期制作任务。影视后期方向,可将动捕演员表演转化为虚拟角色提高特效制作效率。专业领域,创作者能通过草图分镜验证效果。在 C 端大众消费侧,AI 视频有望在小说、网文阅读、短情景剧等内容消费方向发挥潜力,人物识别和替换可衍生电商平台虚拟试衣间能力。Viggle、DomoAI 的产品中的模板套用能力若低成本开放在短视频产品中,可能带来新的爆发周期。 Stable Video Diffusion 1.1 新模型以及 stablevideo.com 开始内测,清晰度、控制方式和效果都有很大提升,目前提供文生视频、图生视频两种方式,文生视频先生成 4 张图像选一张用于生成视频,图生视频提供几种控制方式(仅开放了一部分),另外目前提供 17 种风格。
2024-11-10
ChatGPT最新的版本是什么
目前 ChatGPT 官网主要有以下版本: 1. GPT3.5:免费版本,拥有 GPT 账号即可使用,但智能程度相对较低,无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件,知识更新到 2022 年 1 月。 2. GPT4:智能程度较高,知识更新到 2023 年 12 月。想要使用更多功能需要升级到 PLUS 套餐,收费标准为 20 美金一个月,还有团队版和企业版,费用更贵,一般推荐使用 PLUS 套餐。 3. ChatGPT 4o:5.13 发布,可免费体验,但免费体验次数有限,知识更新到 2023 年 10 月。想要更多功能也需要升级到 PLUS 套餐。
2024-11-09
最新AI搜索相关产品总结
以下是关于最新 AI 搜索相关产品的总结: 自今年二月份以来,AI 搜索赛道不断有新的产品出现,市场定位有所差异。 在国内,有大模型厂商推出的 ChatBot 产品,如智谱清言、Kimi Chat、百小应、海螺 AI 等;也有搜索厂商或创业团队推出的 AI 搜索产品,如 360 AI 搜索、秘塔、博查 AI、Miku 等。 在海外,有很多成熟的和新出的泛 AI 搜索产品,如 Perplexity、You、Phind 等。中国公司和团队也有面向全球市场的出海产品,如 ThinkAny、GenSpark、Devv 等。 ThinkAny 选择出海做全球市场,主要考虑国内竞争激烈、用户付费意愿不高、存在政策风险等因素。 从解决的需求或面向的群体分类,可分为通用搜索和垂直搜索两类。通用搜索如 Perplexity、ThinkAny,没有明显的受众倾向,任何人可以搜任何问题,都能得到相对不错的搜索结果。垂直搜索如 Phind、Devv、Reportify,一般面向特定人群或特定领域,在某类问题的搜索上会有更好的结果。 AI 搜索目前主要有两类产品形态: 1. 大模型厂商或第三方推出的 ChatBot,主要交互是一个对话框+RAG 联网检索,这类产品包括 ChatGPT、Kimi Chat 等。 2. 专门做 AI 搜索的产品,主要交互是一个搜索框+搜索详情页,这类产品包括 Perplexity、秘塔等。 以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 2. Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 5. Flowith:一款创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,提供插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。 这些 AI 搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。但内容由 AI 大模型生成,请仔细甄别。
2024-11-07
学习ai有哪些方向可以选择
学习 AI 有以下几个方向可供选择: 1. 编程语言基础:可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 工具和平台体验:尝试使用如 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。也可以探索面向特定群体的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。 6. 特定模块深入:根据自身兴趣选择特定模块,如图像、音乐、视频等进行深入学习,掌握提示词技巧。 7. 与 AI 产品互动:使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 8. 结合特定领域:如将 AI 与宠物行业结合,包括 AI 宠物助手(自动识别宠物情绪、提供饮食建议、监测健康状况等)、AI 宠物互动玩具、AI 宠物图像生成、AI 宠物医疗诊断、AI 宠物行为分析等,需要掌握基础的 AI 技术,了解宠物相关领域知识,关注应用案例并尝试开发原型。
2024-11-08
介绍一下视觉算法产品,以及该方向产品经理需要做的内容,以及面试可能会考察的知识点
目前知识库中暂时没有关于视觉算法产品、该方向产品经理工作内容以及面试考察知识点的相关信息。但一般来说,视觉算法产品是利用计算机视觉技术来实现特定功能的产品,例如图像识别、目标检测、视频分析等。 视觉算法产品经理需要做的工作内容可能包括: 1. 市场调研与需求分析:了解市场需求、竞争对手情况,挖掘潜在的用户需求。 2. 产品规划与定义:明确产品的目标、功能、性能指标等。 3. 算法选型与整合:根据需求选择合适的视觉算法,并进行整合和优化。 4. 项目管理与推进:协调开发团队、测试团队等,确保项目按时交付。 5. 与客户沟通:收集反馈,优化产品。 在面试视觉算法产品经理时,可能会考察以下知识点: 1. 计算机视觉基础知识,如常见的算法和模型。 2. 对相关行业和市场的了解。 3. 产品管理的方法和流程。 4. 项目管理经验和能力。 5. 沟通协调和团队合作能力。
2024-11-01
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
具身智能在制造行业的落地方向有哪些?
具身智能在制造行业的落地方向主要包括以下几个方面: 1. 预测性维护:利用具身智能技术预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,实现效率提升和成本降低。 4. 机器人自动化:控制工业机器人,进一步提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体理解和解释视觉信息,进行有效的空间导航和物体识别。 作为一个系统性的工程,具身智能涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向发展。但也存在一些问题,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以什么样的形式进入模型当中等。
2024-10-26
有代码基础和数学基础,帮我制定一份AI的学习计划,主要方向是数据分析、计算机视觉和AIGC
以下是一份针对您有代码基础和数学基础,以数据分析、计算机视觉和 AIGC 为主要方向的 AI 学习计划: 一、基础知识学习 1. 深入学习 AI 相关的基本概念,包括但不限于: AI(人工智能):了解其定义、发展历程和应用领域。 机器学习:掌握监督学习、无监督学习和强化学习的原理和应用。 深度学习:理解神经网络和神经元的工作原理。 2. 学习相关数学知识,如线性代数、概率论、统计学等,为后续的学习打下坚实基础。 二、数据分析方向 1. 学习数据分析的基本流程和方法,包括数据收集、清洗、预处理和可视化。 2. 掌握常见的数据分析工具和库,如 Python 的 Pandas、NumPy、Matplotlib 等。 3. 学习数据挖掘和机器学习算法在数据分析中的应用,如分类、回归、聚类等。 三、计算机视觉方向 1. 学习计算机视觉的基本概念和原理,如图像处理、特征提取、目标检测等。 2. 掌握深度学习框架,如 TensorFlow、PyTorch 等,并学习使用它们进行计算机视觉任务的开发。 3. 实践常见的计算机视觉项目,如人脸识别、图像分类、目标跟踪等。 四、AIGC 方向 1. 了解 AIGC 的发展现状和应用场景。 2. 学习生成式模型,如生成对抗网络(GAN)、变分自编码器(VAE)等。 3. 实践 AIGC 相关的项目,如文本生成、图像生成等。 五、学习资源推荐 1. 在线课程:Coursera 上的《机器学习》《深度学习专项课程》等。 2. 书籍:《机器学习》(周志华)、《深度学习》(伊恩·古德费洛等)。 3. 开源项目:在 GitHub 上寻找相关的优秀开源项目进行学习和实践。 4. 视频资源: :某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,内容硬核,值得观看。 六、实践与项目经验积累 积极参与实际项目,将所学知识应用到实际中,不断提升自己的能力。 请注意,学习是一个持续的过程,需要不断地实践和总结,祝您学习顺利!
2024-09-18
主要AI工具的应用方向及优缺点
以下是一些主要 AI 工具的应用方向及优缺点: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦: 优点:能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,具有自动化功能,可让销售团队专注于关键方面。 缺点:暂未提及。 Clari: 优点:专门从事智能收入运营,能创建高度准确的收入预测,统一数据并以易理解方式呈现,简化财务预测过程。 缺点:暂未提及。 Hightime: 优点:作为销售团队的 AI 助手,能处理重复性任务和耗时研究。 缺点:暂未提及。 适合软件项目经理的 AI 工具: 项目管理和任务跟踪工具:如 Jira、Trello 等,集成 AI 功能可辅助制定计划、分配任务、跟踪进度。 优点:提高管理效率。 缺点:暂未提及。 文档和协作工具:如微软 Copilot 集成到 Office 套件,云存储服务如 Google Drive 提供 AI 驱动的文档管理和协作功能。 优点:为文档撰写、编辑等提供辅助,优化协作。 缺点:暂未提及。 风险管理和决策支持工具:可帮助识别和分析项目风险,并提供决策建议。 优点:提升决策科学性。 缺点:暂未提及。 沟通和协作工具:AI 助手辅助进行团队沟通协调、客户关系维护等。 优点:优化沟通与协作。 缺点:暂未提及。 创意生成工具:如文心一格、Vega AI 等,帮助快速生成创意图像素材。 优点:提供创意支持。 缺点:暂未提及。 大淘宝设计部 2023 年度 AI 设计实践中的工具: 主要工具为 Midjourney 和 Stable Diffusion,辅助工具有 RUNWAY 和 PS beta 等。但未提及具体的优缺点。
2024-09-03