Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前的AI能力在制造型企业中的应用有哪些方向

Answer

目前 AI 在制造型企业中的应用方向主要包括以下几个方面:

  1. 预测性维护:利用 AI 预测机器故障,避免工厂停机。
  2. 质量控制:通过检测产品缺陷,提升产品质量。
  3. 供应链管理:优化供应链,提高效率并降低成本。
  4. 机器人自动化:控制工业机器人,提高生产效率。
  5. 产品设计和开发:借助 AI 生成工具快速生成产品的 3D 模型、渲染图、插图等设计元素,提高设计效率。
  6. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案。
  7. 设备维护和故障诊断:分析设备运行数据,预测设备故障并生成维修建议,增强设备可靠性。
  8. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,改善客户体验。

总的来说,AI 技术正在制造业的各个环节得到广泛应用,从产品设计到生产管理再到客户服务,都能显著提高企业的效率和竞争力。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

问:有制造业的 AI 应用吗?

在制造业领域也有一些AIGC(AI Generated Content)的应用:1.产品设计和开发:利用AI生成工具如Adobe Firefly、Midjourney等,可以根据文字描述快速生成产品的3D模型、渲染图、插图等设计元素,大幅提高产品设计效率。2.工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。3.设备维护和故障诊断:利用AI模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。4.供应链管理:AI可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。5.客户服务:基于对话模型的AI客服机器人,可以自动生成个性化的客户回复,提升客户体验。总的来说,AIGC技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。内容由AI大模型生成,请仔细甄别

AI 智能体:企业自动化的新架构 - Menlo Ventures

生成式AI应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures投资组合公司如[Sana](https://menlovc.com/portfolio/sana-labs/)*(企业搜索)、[Eve](https://menlovc.com/portfolio/eve/)*(法律研究副驾驶)和[Typeface](https://menlovc.com/portfolio/typeface/)*(内容生成AI)在这些类别中都是早期突破性的代表,其中心是LLMs的少样本推理能力。但是生成式人工智能的承诺远远超越了这第一波核心使用案例。能为您阅读和写作的人工智能很棒,但更令人兴奋的是能够代表您思考和行动的人工智能。为此,我们已经看到领先的应用程序构建商如[Anterior](https://www.anterior.com/)、[Sema4](https://sema4.ai/)和[Cognition](https://www.cognition.ai/)正在建立解决方案,来处理之前只能由大量人力来解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和API等新型构建块,下一波智能体正在拓展AI能力的边界,实现端到端流程自动化。在我们深入探讨人工智能体领域的过程中,我们将概述Menlo对新兴市场的论点——首先定义什么是智能体以及什么使它们成为可能。我们将追溯[现代人工智能技术栈](https://menlovc.com/perspective/the-modern-ai-stack-design-principles-for-the-future-of-enterprise-ai-architectures/)从少量样本指令到检索增强型生成(RAG)再到完备的智能体系统的架构演化过程,然后探讨这一范式转变对应用和基础设施层面的影响。

Others are asking
有没有针对AI工具嵌入个人工作流方方面面赋能工作的信息
AI 工作流是将 AI 工具引入到工作流程的各个环节中,以提高工作效率。 在说 AI 工作流之前,要先了解工作流的概念。工作流即工作流程,比如写公众号文章,可拆分为选题、列大纲写初稿、改稿、写标题、排版、发布等步骤,每个步骤都有明确的输入和产出,环环相扣。 搭建 AI 工作流有一套工作流: 1. 找到一个熟悉的工作场景,如写文章、做 PPT 等。 2. 拆解工作流程,例如写文章可拆分为选题、写稿、改稿、写标题等步骤。 3. 针对每个步骤嵌入工具,可参考他人经验,灵活选择最优解,目的是提高工作效率,而非增加工作的含 AI 量。 搭建 AI 工作流需要三层能力: 1. 了解各种 AI 工具,知晓其特点和用途。 2. 学会写提示词,以便向 AI 清晰表述任务。 3. 搭建 AI 智能体,使多个 AI 工具协同工作,自动完成任务。
2025-03-17
上一周 ai有什么新的进展
以下是上一周 AI 的一些新进展: 应用形态的重构方面,AI Agent 取得突破,为机器人赋予自主行动能力,AI 编程工具的进展或预示人机协作模式的变革。 2 月,OpenAI 发布视频生成模型 Sora,实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布,RayBan 与 Meta 合作的智能眼镜销量突破百万,字节上线即梦 AI。 6 月,快手发布可灵,Apple Intelligence 发布。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖,约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖,Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。 此外,还有一些关于 AI 的讨论和话题,如把 350 万条 Midjourney 提示词放进一张可视化图里,2 套权威的 AI 术语表,天工新功能的定位靠近元宇宙,NotebookLM 与 AI 播客的关系,Bob 类似于更轻巧的能选多种大模型的桌面端应用“豆包”,Monica.im 的发展,物圆 TreLoop 的情况,对 AGI 距离的讨论,Arc 浏览器的状态,李开复关于 AI 应用爆发和 AGI 的观点,李继刚的 Prompt 玩法,OpenAI 研究副总裁离职,15 岁开发者的开源项目被收购,关于 AI 编程效率的讨论等。
2025-03-17
我需要自己搭一个ai自动剪辑视频的插件
以下是搭建 AI 自动剪辑视频插件的详细步骤: 一、开通服务 1. 先获取搭建完成后需要用到的各种模型的 key。 首先注册火山引擎:https://volcengine.com/L/4lZ8oszvY20/ ,邀请码:KL9ZC1IF 。这个项目会使用到不少 Token,刚好火山现在还有赠送 Token 的活动,若未注册,使用此邀请码和链接注册可获得 375 万的 Token。 开通各项服务和拿到各个服务的 Key: 获取 LLM_ENDPOINT_ID、VLM_ENDPOINT_ID、CGT_ENDPOINT_ID、ARK_API_KEY 。注册后点击:控制台,进入火山方舟控制台(https://console.volcengine.com/ark/region:ark+cnbeijing/model?vendor=Bytedance&view=LIST_VIEW)。创建一个接入点,点击在线推理创建推理接入点。命名并选择 Doubaopro32k 模型。重复此步骤创建 Doubaovisionpro32k、Doubao视频生成模型这两个推理点。创建完成后,复制推理点的 ID 并对应填入相应位置。然后继续点击“API key 管理”创建一个并复制下来,这就是 ARK_API_KEY 。 获取 TOS_BUCKET 。 二、服务部署 1. 购买服务器:直接点击去购买:https://buy.cloud.tencent.com/lighthouse?blueprintType=APP_OS&blueprintOfficialId=lhbpr8j2ftq0&regionId=8&zone=apbeijing3&bundleId=bundle_rs_mc_med1_02&loginSet=AUTO&from=lhconsole 。 2. 根据以下配置购买即可。 3. 购买并付款完成后,回到服务器“控制台”。 4. 点击服务器卡片的空白处,去添加防火墙。按照如下方式添加:8887、8080 端口,点击确定即可。 5. 点击右上角的“登录”按钮,扫码验证后,看到一个命令行窗口。下边出现代码,复制的时候,注意复制全。代码已分好步骤,每次只需要复制粘贴一行,然后点击一次回车。回车后,只有最左边显示中括号对话前缀时,不要操作。若 ctrl+v 粘贴不进去,试试 shift+ctrl+v 粘贴。 6. 在命令行中,一条一条输入: echo\"8887\">/www/server/panel/data/port.pl sudo kill9$ sudo/etc/init.d/bt default 7. 保存并打开你的外网面板地址,输入账号和密码。 8. 选择已有账号登录,然后会有一个账号绑定页,这个是宝塔的账号,如有就直接登录,没有就去注册一个。注意,注册完成之后,要返回原页面登录!不要停留在宝塔的注册功能页。 9. 直接关掉推荐,来到文件。点击根目录,打开 home 文件。 10. 点击:文件目录上方的“终端”,出现下方窗口。 11. 粘贴输入:git clone https://github.com/volcengine/aiapplab.git 。 12. 然后关闭终端窗口,刷新一下会看到有一个 aiapplab 文件夹,打开文件夹找到 demohouse/chat2cartoon 文件夹,看到有一个“.env”。 13. 然后把提前准备的那些 key 和 token,对应的粘贴进去。 14. 粘贴完成之后,继续进入 backend 文件夹,然后打开“终端”输入以下命令: python3 m venv.venv source.venv/bin/activate pip install poetry==1.6.1 poetry install poetry run python index.py 15. 依次完成后,会如下图所示,看到下图到后端就启动成功了,把这个页面保持如下,不要关掉页面。保持这个终端是打开的。 16. 重新复制打开一个新的浏览器标签页面。返回上级文件夹,进入/home/aiapplab/demohouse/chat2cartoon/frontend/src/routes 。
2025-03-17
我要给我的队伍生成一个海报有什么ai工具可以帮助到我
以下是一些可以帮助您为队伍生成海报的 AI 工具: 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作即可创建海报,其 AI 功能可帮助选择合适的颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进的人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 这是一个简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,其智能建议功能可帮助快速找到合适的设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,大大简化设计流程。 此外,如果您想制作视频海报,以下是一些工具和相关活动信息供您参考: 1. 活动:6 月 10 号端午节视频海报 玩法介绍:参赛者需根据端午节主题自由发挥,用 AI 转化成不长于 6 秒视频。 视频工具建议: 。不局限于 Dreamina、PixVerse、Runway、Pika、LiblibAI、SVD、Deforum、AnimateDiff 。 参与规则: 格式限制:投稿文件宽高比为 9:16,竖屏视频海报,不长于 8 秒。文生视频、图生视频均可。 提交的作品必须是原创,不得抄袭他人作品。 请确保内容健康、积极,符合博物馆日的主题。 不建议出现鲜血、武器、鬼怪骷髅、知名人物、18X 等不符合国家政策的内容,违规内容可能导致无法计入评选名单。 不在时间内提交的自动失去评选资格。 提交时间:6 月 10 日 18:00 前提交。 如果您想了解如何用 AI 快速做一张满意的海报,可参考以下方法: 1. 需求场景:当您想在社交平台发布内容但干巴巴的文字点赞少、网上图片质量差易撞图、相册照片不合适等情况,可考虑自己制作。 2. 大致流程: 主题与文案:确定海报主题后,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 风格与布局:选择想要完成的风格意向,背景不一定是空白的,可根据文案和风格灵活调整画面布局。 生成与筛选:使用无界 AI,输入关键词,生成并挑选一张满意的海报底图。 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 海报成果。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-17
AI编程
以下是关于 AI 编程的相关内容: Trae 国内版 Trae 是字节跳动旗下的 AI 原生编程工具,类似 Cursor、Windsurf 等 IDE 工具。它具有以下特点: 1. 对国内用户友好,有中国官网、中文界面、国内模型,稳定且快速。 2. 使用完全免费,无需折腾会员,下载后可直接使用,支持豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 3. 内置预览插件,写完代码一键运行,所见即所得。 它不仅适合新手入门,能解决初学 AI 编程时遇到的官网打不开、购买会员、安装中文和预览插件等前置问题,让 AI 编程进入零门槛时代,还能帮助资深程序员大幅提升编程速度。网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 1. 打通学习与反馈循环:从验证环境、建立信心、理解基本概念开始,形成“理解→实践→问题解决→加深理解”的循环。 2. 建议:使用流行语言和框架(如 React、Next.js、TailwindCSS);先运行再优化,小步迭代,一次解决一个小功能;借助 AI 生成代码后请求注释或解释,帮助理解代码;遇到问题时采取复现、精确描述、回滚三步走。 用好 AI 编程工具(如 Cursor)的关键技能 1. 准确描述需求,清晰表达目标和问题。 2. 具备架构能力,将复杂系统拆解为松耦合的模块,便于 AI 高效处理。 3. 拥有专业编程能力,能够判断 AI 生成代码的优劣。 4. 具备调试能力,能快速定位问题并解决,独立或借助 AI 完成调试。
2025-03-17
Google 图片视频AI
以下是关于 Google 图片视频 AI 的相关信息: Google 发布了 AI 视频 Veo2 和 AI 绘图 Imagen3。 关于 AI 视频 Veo2: 官网介绍可申请 waitlist,链接为 https://labs.google/fx/zh/tools/videofx 。 引入了改进后的物理引擎,能模拟真实世界动态变化。 能更好地捕捉和模拟人类动作、运动轨迹,并高精度呈现。 具有电影级视觉效果,能生成有深度感和层次感的场景。 提供灵活的镜头控制选项,允许用户调节镜头角度、视角和焦距等参数。 关于 AI 绘图 Imagen3: 绘图链接为 https://labs.google/fx/tools/imagefx 。 是最高质量的文本到图像模型,能生成比之前模型更好细节、更丰富光照和更少干扰伪影。 在图像细节和清晰度上有显著提高,生成的图像更生动、真实,细节更丰富。 相关报道和链接: 数字生命卡兹克:Google 全新发布 AI 视频 Veo2、AI 绘图 Imagen3 何以凌越,https://mp.weixin.qq.com/s/4ACndSdfG8az3gdLn5QLIQ 。 量子位:谷歌版 Sora 升级 4K 高清!一句话控制镜头运动,跑分叫板可灵海螺,https://mp.weixin.qq.com/s/8H286tyxbTeZrtEBDZHaA 。 锤爆 Sora,尺度最大,谷歌发布最强视频模型 Veo2,叫板海螺可灵,https://mp.weixin.qq.com/s/sMECORvSikuKHNaEzPor6Q 。 谷歌版 Sora 来了,4K 高清暴击 OpenAI!视频生图新卷王,更理解物理世界,https://mp.weixin.qq.com/s/PFeyrX2q9mWd6GIrJ9qdWQ 。 谷歌的 Imagen 3 终于来了——它是最好的 AI 图像生成器吗?https://mp.weixin.qq.com/s/gcyGvA6_9mxN9yz__jRRHQ 。 测评: ,Google 视频和图像生成模型更新包括 Veo 2、Imagen 3 和一个新工具 Whisk 。
2025-03-17
可以同时接多个大模型api的聊天应用
以下是一些可以同时接多个大模型 API 的聊天应用: 1. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤 能实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用等功能。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,包括文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多种部署方法,如本地运行、服务器运行、Docker 的方式。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 相关教程:张梦飞同学写的更适合小白的使用教程 2. DIN:全程白嫖拥有一个 AI 大模型的微信助手 搭建步骤: 搭建,用于汇聚整合多种大模型接口,并可白嫖大模型接口。 搭建,这是个知识库问答系统,可将知识文件放入,并接入大模型作为分析知识库的大脑来回答问题。若不想接入微信,其自身有问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 拓展功能:搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画。 3. LLM 开源中文大语言模型及数据集集合中的外部挂件应用 wenda: 地址: 简介:一个 LLM 调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于大模型的生成能力。 JittorLLMs: 地址: 简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。 WebCPM 地址: 简介:一个支持可交互网页搜索的中文大模型。 GPT Academic: 地址: 简介:为 GPT/GLM 提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种 LLM 模型,兼容复旦 MOSS, llama, rwkv, 盘古等。 ChatALL: 地址: 简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个 AI,可以帮助用户发现最好的回答。
2025-03-17
AI应用分类
AI 的应用场景非常广泛,主要包括以下几类: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:(未给出具体应用场景) 此外,还有众多具体的 AI 应用产品,例如: 1. 辅助创作与学习:AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 具体如: AI 摄影参数调整助手:利用图像识别、数据分析技术,在一些摄影 APP 中根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,有相关音乐情感分析软件可判断音乐的情感倾向。 AI 家居智能照明系统:结合物联网技术、机器学习,像小米智能照明系统可根据用户习惯和环境变化自动调整灯光。 AI 金融风险预警平台:运用数据分析、机器学习,金融风险预警软件能提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,马蜂窝可根据用户需求优化旅游路线。
2025-03-17
deepseek+的一些应用
DeepSeek+ 有以下一些应用: 1. 清华大学沈少阳发布了《DeepSeek+DeepResearch 应用报告》。 2. 智灵动力发布了《DeepSeek 行业应用实践报告》。 3. 厦门大学发布了《2025 年大模型概念、技术与应用实践》。 4. 国海证券发布了《人工智能系列深度:DeepSeek 十大关键问题解读》。 5. 全球数据资产理事会发布了《DeepSeek 使用教程蓝皮书从入门到进阶完整指南》。 6. 北航&清华大学发布了《DeepSeek+DeepResearch——让科研像聊天一样简单》。 7. 中泰证券发布了《DeepSeek 将如何改变 AI 应用?》。 此外,还举办了全国 23 城近 4000 人玩转 DeepSeek 的活动,活动中各地分享了不同的应用场景,如郑州场展示了自己搭建的工作流,深圳场分享了 DeepSeek+出海的落地方案,北京场有人玩起了 AR+机械汪,广州场有人分享如何用 DeepSeek 辅助速通吃“霸王餐”,福州场有最年轻的分享者展示了玩转 DS 的示例。同时,活动还展示了飞书多维表格和 DeepSeek 的结合的强大之处。 伊登实现了最新 Deepseek+coze 新闻播报自动化工作流,具有全自动化处理、40 秒快速出片、成本低廉、输出质量稳定专业等优势,还能进行一系列改进,如加入配套 BGM、增加画面内容和转场效果、使用免费节点替代付费插件、优化模板样式、增加自动化程度支持批量处理等。您可以在扣子商店体验,也可以自己搭建。
2025-03-17
AI在医学的应用
AI 在医学领域有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 此外,AI 在医疗健康生物制药的研究中也发挥着重要作用,例如: 1. 提前三年诊断胰腺癌。 2. 发现与胶质母细胞瘤相关的新靶基因。 3. 帮助抗衰老,筛查高效的药物候选物。 4. 寻找阿尔兹海默症的治疗方法。 5. 早期诊断帕金森。 在 2024 年,AI 在医疗领域的应用与发展趋势包括: 1. 利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,从大量真实胸部 X 射线及其相应报告中生成大型数据集。
2025-03-17
现在哪个应用文生图的效果最好?
目前在应用文生图方面,以下几个模型效果较好: 1. DALL·E 3:与当前最流行的文生图应用 Midjourney 相比能打个平手甚至超越,使用门槛较低,不需要用户掌握复杂的 Prompt 编写知识,且已正式上线 ChatGPT,Plus 用户和 Enterprise 用户都可以使用。 2. Imagen 3:真实感满分,指令遵从强。 3. Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 但不同模型也有各自的特点和不足,例如: 1. Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 2. 快手可图:影视场景能用,风格化较差。 3. Flux.1.1:真实感强,需要搭配 Lora 使用。 4. 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 5. Luma:影视感强,但风格单一,糊。 6. 美图奇想 5.0:AI 油腻感重。 7. 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 8. SD 3.5 Large:崩。 您可以根据具体需求和使用体验选择适合的模型。
2025-03-17
在HR行业有哪些提效应用
目前在 HR 行业中,AI 可以在以下方面提高效率: 1. 人才招聘与筛选:利用自然语言处理和机器学习算法,快速筛选简历,评估候选人与职位的匹配度。 2. 员工培训与发展:通过分析员工的技能和绩效数据,为个性化的培训计划提供建议。 3. 绩效管理:自动收集和分析绩效数据,提供更客观准确的评估。 4. 员工关系管理:预测员工离职风险,及时采取措施改善员工满意度。 5. 人力资源规划:基于数据分析预测人力需求,优化人力资源配置。
2025-03-17
AI在制造业的一些典型应用场景
在制造业中,AI 有以下一些典型应用场景: 1. 产品设计和开发:可利用 AI 生成工具(如 Adobe Firefly、Midjourney 等)根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:通过 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可依据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提升管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,改善客户体验。 此外,制造业中的 AI 应用还包括: 1. 预测性维护:预测机器故障,避免工厂停机。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 机器人自动化:控制工业机器人,提高生产效率。 4. 生产计划和供应链计划状态查询。 5. 产线预测性维保辅助。 6. 产品质量分析与溯源。
2025-03-14
COZE智能体全自动制造视频发布媒体
以下是关于 COZE 智能体全自动制造视频发布媒体的相关内容: 一、概述 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,现提供教程。 二、先看效果 可查看 三、功能 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 四、涉及工具 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 五、大体路径 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 工作流调试完成后,加入到智能体中。可选择工作流绑定卡片数据,智能体通过卡片回复。发布时选择飞书多维表格,填写上架信息,等待审核。 3. 在多维表格中使用字段捷径,引用该智能体。创建飞书多维表格,添加相关字段,选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。点击多维表格右上角的“自动化”,创建想要的自动化流程。 六、【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 1. 三、创建智能体 3. 知识库 本次创建知识库使用手动清洗数据。 3.1 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义,输入,可编辑修改和删除,点击添加 Bot,在调试区测试效果。 3.2 本地文档:注意拆分内容提高训练数据准确度,将海报内容训练到知识库,按固定方式人工标注和处理。 3.3 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-03-12
AI可以协助制造业企业做哪些工作
AI 可以协助制造业企业完成以下工作: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:通过分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 此外,在制造业中,AI 还能用于预测性维护,帮助工厂避免停机;进行质量控制,检测产品缺陷以提高产品质量;优化供应链,提高效率和降低成本;控制工业机器人,提高生产效率;以及协助生产计划和供应链计划状态查询、产线预测性维保辅助、产品质量分析与溯源等工作。
2025-03-10
都有哪些 关于制造行业的AI应用
在制造业领域,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 总的来说,AIGC 技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。 此外,在汽车行业,AI 的应用案例包括: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统。 3. 个性化用户体验:AI 可根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:通过分析车辆的实时数据,AI 能预测潜在的故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造过程中,AI 用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司使用 AI 分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理:AI 在电动汽车(EV)的电池管理和充电策略中发挥作用,优化电池使用和充电时间来提高能源效率和延长电池寿命。 8. 共享出行服务:AI 支持的共享出行服务,如 Uber 和 Lyft,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。
2025-02-27
AI如何应用在制造业中
在制造业中,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,提升客户体验。 总的来说,AIGC 技术正在制造业的各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。
2025-02-07
制造业质量管理可以应用ai做些什么
在制造业质量管理方面,AI 有以下应用: 1. 质量控制:AI 可以用于检测产品缺陷,提高产品质量。 2. 预测性维护:能够预测机器故障,帮助工厂避免因设备问题影响产品质量。 3. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程,从而间接保障产品质量。 4. 工业质检:作为基于视觉的检测方式,虽然相对成熟但未深入 B 端核心应用场景,如今可通过多模态和大模型解决上一代无法解决的问题,提升质检性能。
2025-02-06
在学习过ai的基本原理以及尝试过一些大众的ai应用后,我想进一步深入了解ai,给我可以参考的方向
以下是您进一步深入了解 AI 可以参考的方向: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 6. 精进学习: 了解 AI 背景知识,包括基础理论、历史发展。 掌握数学基础,如统计学基础(熟悉均值、中位数、方差等)、线性代数(了解向量、矩阵等)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 熟悉算法和模型,如监督学习(了解线性回归、决策树、支持向量机等)、无监督学习(熟悉聚类、降维等)、强化学习(了解基本概念)。 学会评估和调优,包括性能评估(了解交叉验证、精确度、召回率等)、模型调优(学习使用网格搜索等技术优化模型参数)。 掌握神经网络基础,包括网络结构(理解前馈网络、卷积神经网络、循环神经网络等)、激活函数(了解 ReLU、Sigmoid、Tanh 等)。
2025-03-11
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中、美股市对比的价值 2. 研究目的和问题 明确预测股市波动率的具体目标 提出中、美股市对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型及其在股市预测中的效果 分析其优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方法 介绍常用的波动率模型 3. 中、美股市的特点和差异 对比两国股市的交易制度、投资者结构等方面 总结已有研究中关于中、美股市波动率的差异 三、数据预处理与特征工程 1. 数据收集与清洗 详细描述中国股市和美股市场的数据收集范围和时间跨度 处理缺失值、异常值等数据问题 2. 特征选择与构建 确定影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 说明对数据进行标准化和归一化的方法和目的 四、模型构建与训练 1. 选择合适的机器学习模型 比较不同模型(如随机森林、支持向量机、神经网络等)的适用性 确定最终选用的模型 2. 模型训练与优化 描述训练过程中的参数调整和优化方法 展示模型的性能评估指标 3. 模型验证与比较 使用交叉验证等方法验证模型的准确性 对比不同模型的预测效果 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 3. 敏感性分析 研究模型参数和输入特征对预测结果的敏感性 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点和差异 对比中、美股市预测结果的异同 3. 影响因素分析 探讨美股市场特有的影响波动率的因素 七、中、美股市波动率对比分析 1. 波动率特征对比 比较中、美股市波动率的均值、方差、峰度等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 对比两国股市中影响波动率的宏观经济因素、政策因素等 讨论投资者行为对波动率的影响差异 3. 风险评估与管理对比 评估中、美股市的风险水平 对比风险管理制度和策略 八、结论与展望 1. 研究结论总结 概括中、美股市波动率预测的主要成果 总结对比分析的关键发现 2. 研究的局限性 指出研究过程中存在的不足之处 3. 未来研究方向 提出进一步改进模型和拓展研究的方向 对中、美股市波动率研究的展望 数据图表要求: 1. 中、美股市历史波动率的折线图 2. 不同机器学习模型预测效果的对比柱状图 3. 中、美股市波动率特征的统计表格 4. 影响中、美股市波动率的因素的相关性矩阵图 5. 中、美股市风险评估的雷达图
2025-03-11
1.根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求。
很抱歉,暂时没有关于“基于机器学习的中国股市波动率预测与美股市场对比分析”这一论文题目的详细框架相关内容。但我可以为您提供一个大致的框架思路供您参考: 一、引言 1. 研究背景和意义 阐述中国股市和美股市场的重要性 说明波动率预测的价值 2. 研究目的和问题 明确对比分析的主要目标 提出具体的研究问题 二、文献综述 1. 机器学习在股市波动率预测中的应用 总结相关方法和模型 分析其优缺点 2. 中国股市和美股市场波动率的特征 回顾已有研究成果 指出研究空白 三、理论基础与方法 1. 机器学习算法介绍 如随机森林、支持向量机等 解释其原理和适用场景 2. 数据来源和预处理 说明中国股市和美股市场的数据来源 描述数据清洗和预处理的步骤 3. 波动率计算方法 介绍常用的波动率计算指标 四、实证分析 1. 模型构建与训练 运用所选机器学习算法构建预测模型 展示训练过程和参数调整 2. 结果评估与比较 评估中国股市和美股市场预测结果的准确性 进行对比分析 数据图表要求:绘制预测结果与实际波动率的对比图 3. 影响因素分析 探讨可能影响波动率预测的因素 数据图表要求:绘制影响因素与波动率的关系图 五、结论与展望 1. 研究结论总结 概括中国股市和美股市场波动率预测的成果 对比分析的主要发现 2. 研究的局限性 指出研究中存在的不足 3. 未来研究方向 提出进一步研究的建议和方向 以上框架仅供参考,您可以根据实际研究需求进行调整和完善。
2025-03-10
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中美股市对比的价值 2. 研究目的和问题 明确预测中国股市波动率的目标 提出与美股市场对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型 分析其在股市预测中的优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方式 介绍常用的波动率测量指标 3. 中美股市的特点和差异 对比中美股市的交易制度、投资者结构等方面 总结前人关于中美股市对比的研究成果 三、数据预处理与特征工程 1. 数据收集与清洗 收集中国股市和美股市场的历史数据 处理缺失值、异常值等 2. 特征选择与构建 提取影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 对数据进行标准化处理,使其具有可比性 四、模型建立与训练 1. 选择合适的机器学习模型 比较不同模型的性能,如随机森林、支持向量机等 确定最终使用的模型 2. 模型训练与优化 使用训练数据进行模型训练 调整参数以提高模型性能 3. 模型评估指标 确定评估模型预测效果的指标,如均方误差、准确率等 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点 与中国股市预测结果进行对比 七、中美股市波动率对比分析 1. 波动率特征对比 比较中美股市波动率的均值、方差等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 探讨宏观经济因素、政策法规等对中美股市波动率的不同影响 分析投资者行为和市场结构的差异 3. 风险评估与投资策略 根据对比结果评估中美股市的风险水平 提出针对中美股市的投资策略建议 八、结论与展望 1. 研究总结 总结研究的主要成果和发现 2. 研究不足与展望 指出研究中存在的局限性 对未来研究方向提出展望 数据图表要求: 1. 展示中国股市和美股市场的历史波动率走势对比图。 2. 呈现不同机器学习模型在预测中国股市和美股市场波动率时的性能评估指标对比图。 3. 绘制中美股市波动率的统计特征(均值、方差等)对比柱状图。 4. 以图表形式展示影响中美股市波动率的关键因素的对比分析。
2025-03-07
aigent成熟后会朝哪个方向发展
AIgent 成熟后的发展方向可能包括以下几个方面: 1. 技术层面: 解决记忆力问题,包括提高记忆准确性、完善逻辑完整性、实现合理遗忘、优化长期记忆机制与 Token 长度和调用效率之间的制衡。 增强长 Token 能力,如刚发布的 Gemeni1.5 在研究中达到 10M 的 Token 长度,ChatGPT 也在近期官宣了“记忆能力”,国内也有公司专攻超长 Token。 提升“使用工具能力”,出现了如字节推出的 Coze 等中间层产品。 2. 应用层面: 以人的方式相互交流,自主搭建社会协作关系,最终实现模仿人、替代人。 成为“一人公司”的数字员工,以大语言模型为大脑,串联所有已有的工具和新造的 AI 工具。 从“能力积累期”进入“应用爆发期”,多智能体协作成为解决复杂问题的主流范式,专业化分工与场景深耕是必经之路。 从规则驱动转向学习驱动模式,自主能力由多个核心组件协同支撑,多智能体系统(MAS)成为复杂任务解决方案。 构建智能体能力评估的统一标准与方法,建立可度量、可对比的评价体系。
2025-03-06
告诉我211本科人工智能毕业一志愿考研结果不理想,很可能被调剂到一个双非院校,请给我在就业方面一个合适的方向(包括但不限于大学老师、大厂、中小厂、国企、考公考编、选调生等)
对于 211 本科人工智能专业毕业,考研一志愿结果不理想可能被调剂到双非院校的情况,在就业方面可以有以下几个方向: 大学老师:如果您有继续深造的意愿,在研究生阶段取得优异成果,未来仍有机会进入高校任教,但可能相对较难进入重点高校。 大厂:大厂通常对学历和能力都有较高要求。虽然您的研究生院校可能是双非,但如果在研究生期间积累丰富的项目经验、具备扎实的专业技能,仍有机会进入大厂。 中小厂:中小厂对于学历的要求相对宽松,更注重实际能力。您可以在中小厂获得更多实践机会,积累工作经验,为未来的职业发展打下基础。 国企:国企的稳定性较高,对于学历的要求也相对灵活。您可以关注国企的招聘信息,寻找与人工智能相关的岗位。 考公考编:公务员和事业单位的工作稳定性强,一些与科技、信息化相关的部门可能会招聘人工智能专业的人才。 选调生:如果您符合选调生的选拔条件,可以尝试通过选调生途径进入政府部门工作。 总之,无论选择哪个方向,都需要在研究生期间不断提升自己的专业能力和综合素质,增加就业竞争力。
2025-03-03