直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

数据标注会涉及哪些方面?以及现在哪些类型、行业的数据更需要标注?

回答

数据标注涉及以下方面:

  1. 从量到质的转变:早期大模型训练侧重依靠大量算力和大规模数据集提升性能,如今数据质量成为提高模型性能的关键瓶颈,更需注重提高数据质量和相关性。
  2. 向知识密集型转变:多模态模型需处理多种类型数据,如文本、图像、声音等,这使数据标注过程更细致复杂,需要更高水平的理解和分析能力,不再是简单的劳动力作业。
  3. 对标注方式的理解:大模型的数据标注不仅关注清晰的行业术语,还需要能被模型理解的标注方式,可能涉及更多上下文的理解和语义分析。
  4. 对业务的理解:目前数据服务依赖于标注员对业务的理解,通用型数据需求减少,更多是公司内部独有的数据内容和词语,能承接大模型数据标注的服务商不多。

现在更需要标注的数据类型和行业包括:

  1. 多模态模型相关的数据,如同时包含文本、图像、声音等多种类型的数据。
  2. 公司内部独有的、与特定业务相关的数据。

在数据标注过程中,还需注意数据隐私与安全问题,如数据加密与计算效率的权衡等。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

质朴发言:期待地搓手手:多模态大模型的 GPT 时刻|Z 沙龙第 6 期

在合成过程中,我们发现原始真实数据的质量和数量对合成效果的影响很大,因此我们需要尽可能提高这些数据的质量。团队发现直接使用合成数据进行训练可行,但在实际应用场景中可能会出现一些不匹配的情况。例如,不同机构或医院对阳性和阴性的定义可能不一致,导致标准不统一。尽管存在这些问题,合成数据仍是一个不错的替代训练数据集。c.数据领域的三个趋势、挑战和机会从量到质的转变早期的大模型训练侧重于“暴力美学”,即通过大量算力和大规模数据集来驱动模型的性能提升。然而,随着技术的进步,数据质量成为了提高模型性能的关键瓶颈。这意味着简单地增加数据量和算力不再足够,更重要的是提高数据的质量和相关性。数据标注向知识密集型转变多模态模型需要处理多种类型的数据(如文本、图像、声音等),这要求数据标注过程更加细致和复杂。例如,进行情绪判断或推理时,需要更高水平的理解和分析能力。数据标注不再是简单的劳动力作业,而是转变为一种知识密集型的工作。

质朴发言:期待地搓手手:多模态大模型的 GPT 时刻|Z 沙龙第 6 期

大模型的数据标注不再只是关注清晰的行业术语,而是更多地需要模型能理解的标注方式,这可能涉及更多上下文的理解和语义分析。目前数据服务依赖于标注员本身对业务的理解,这些数据是高阶的,通用型的已经不需要了,更多的是公司内部的独有的数据内容和词语,真正能承接大模型数据标注的服务商不多。真正能够承接指令、承接数据标注的通用型公司其实不是特别多,因为这更依赖于本身对业务的理解。因此,现在大部分的客户的数据标注都是自己做,我们也会参与其中。d.数据隐私与安全数据加密与计算效率的权衡隐私问题在数据处理方面尤为复杂。虽然联邦学习被提出作为一种可能的解决方案,但效率极低,低了几个数量级。并且自从概念提出以来,除了在数据加密方面取得一些进展外,其它方面的发展仍然缓慢。数据加密的程度与计算资源的损失之间存在基本的权衡。尽管一些硬件厂商,如Intel和ARM,推出了针对隐私保护的加密产品,虽然在理论上可行,但实际效率仍然很低。隐私与效率之间的权衡

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

首先,我们需要对数据集进行清洗,和传统深度学习时代一样,数据清洗工作依然占据了AIGC时代模型训练70%-80%左右的时间。并且这个过程必不可少,因为数据质量决定了机器学习的上限,而算法和模型只是在不断逼近这个上限而已。我们需要筛除分辨率较低,质量较差(比如说768*768分辨率的图片< 100kb),存在破损,以及和任务目标无关的数据,接着去除数据里面可能包含的水印,干扰文字等,最后就可以开始进行数据标注了。数据标注可以分为自动标注和手动标注。自动标注主要依赖像BLIP和Waifu Diffusion 1.4这样的模型,手动标注则依赖标注人员。(1)使用BLIP自动标注caption我们先用BLIP对数据进行自动标注,BLIP输出的是自然语言标签,我们进入到SD-Train/finetune/路径下,运行以下代码即可获得自然语言标签(caption标签):

其他人在问
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
AI和人工标注相关
以下是关于 AI 和人工标注相关的内容: 在 Agent 相关比赛的赛道介绍中,涉及到多个与 AI 和人工标注相关的参考方向,包括: 1. 内容生成:AI 可自动编写文章并选择或生成相应图片。 2. 图像标注:AI 能识别和理解图片内容,并生成相应文字描述。 3. 图文匹配:为给定图片找到合适文字描述,或为给定文字找到匹配图片。 4. 数据可视化:将复杂数据用图表、信息图等方式可视化展示,使解读更直观简洁。 5. 设计辅助:例如生成 LOGO、海报设计等。 6. 自动化排版:根据文本内容与结构自动进行页面布局和美观排版。 7. 图文识别:借助 OCR 技术抓取图文内容后,AI 能够理解并处理。 8. 新闻和社交媒体:AI 可对大量新闻和社交媒体信息自动编辑和汇总,生成图文摘要。 9. 艺术创作:辅助绘画、音乐创作。 在 OpenAI O1 的训练中,可能采用的训练数据包括人工标注数据和合成数据。对于人工标注数据,会人工标注一批 COT 思考过程,形成<问题,思考过程(包括思考过程中出现的错误及错误修正过程),答案>,用这些数据 SFT 一下 o1 初始的模型,启动其输出模式。但人工标注存在难度大、成本高、可扩展性差的问题,优点是质量较高。之后可以采用合成数据的模式,如从人工标注的 COT 里截取片段,用 MCTS 树搜索方式补齐后续推理过程,或者对于有确定标准答案的逻辑问题,通过不断试错的模式搜索答案,这些正确或错误的答案都可用于训练 o1 模型。
2024-10-14
推荐分析PDF文档 提炼标注关键词的AI
以下是一些可以分析 PDF 文档、提炼标注关键词的 AI 产品或方法: 1. DeepL(网站):点击页面“翻译文件”按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部“更多”按钮,选择“制作双语 BPUB 电子书”、“翻译本地 PDF 文件”、“翻译 THML / TXT 文件”、“翻译本地字幕文件”。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件“Ebook Translator”。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译“Document”按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏“文件翻译”,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击“文档翻译”,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方“切换成电子书”,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-14
数据标注与Ai的大模型是怎样的环节
在 AI 领域中,数据标注与大模型有着密切的关系。 对于大模型而言: 1. 数据清洗:在训练前对数据预处理,移除或修正有偏见、歧视等不道德内容的数据。 2. 算法设计:减少偏见和不公平性,平衡数据集中不同群体的代表性。 3. 道德和伦理准则:制定明确准则指导开发和使用。 4. 透明度:对模型能力和局限性保持透明,告知用户可能的偏差和不确定性。 5. 用户反馈:允许用户反馈以识别和纠正不道德行为。 6. 持续监控:监控模型表现,确保输出符合道德和伦理标准。 7. 人工干预:在可能涉及道德伦理问题时引入人工审核和干预。 8. 教育和培训:对使用人员进行道德伦理方面的教育和培训。 在数据标注方面: 1. 数据清洗工作占据 AIGC 时代模型训练 70%80%的时间,必不可少,因为数据质量决定机器学习的上限。 2. 需筛除分辨率低、质量差、存在破损及与任务目标无关的数据,去除可能包含的水印、干扰文字等。 3. 数据标注分为自动标注和手动标注,自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注依赖标注人员。例如使用 BLIP 可对数据进行自动标注 caption。 然而,在中国的 AI 创业生态中,存在一些问题: 1. 高质量的数据处理服务稀缺。 2. 数据获取门槛低,但高质量数据获取困难,中文互联网数据质量相对较低。 总之,确保 AI 大模型的道德和伦理性以及获取高质量的数据标注是复杂且持续的挑战。
2024-09-12
数据标注主要有什么用
数据标注主要有以下作用: 在 AIGC 时代的模型训练中,数据标注是必不可少的环节。数据质量决定了机器学习的上限,而标注工作能筛除分辨率低、质量差、存在破损以及与任务目标无关的数据,去除可能包含的水印、干扰文字等,从而提高数据质量。 有助于提高训练数据的真实性、准确性、客观性和多样性。 在生成式人工智能技术研发过程中,数据标注的提供者应当制定清晰、具体、可操作的标注规则,开展质量评估,抽样核验标注内容的准确性,对标注人员进行必要培训,监督指导标注人员规范开展标注工作。 数据标注分为自动标注和手动标注。自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注则依赖标注人员。例如使用 BLIP 可自动标注 caption。
2024-09-12
在导入前,先对知识库文档内容进行标注处理,要怎么处理
在导入前对知识库文档内容进行标注处理,主要有以下要点: 为提升召回准确性,一方面在导入前,先对知识库文档内容进行标注处理,另一方面对于切割后的 chunk 进行标注,如标注 chunk 来源哪个文档的哪个段落。 对于本地 word 文件,每个章节都要按照固定的方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。
2024-08-19
我可以将AI用在日常市场营销工作中的哪些方面呢
在日常市场营销工作中,您可以将 AI 应用于以下方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:利用 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:使用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:利用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:利用 AI 帮助在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:借助 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,对于中小企业,还可以通过以下方式利用 AI 提升市场营销效果: 1. 营销自动化: 实施基于 AI 的营销自动化工具,提高营销活动的效率和一致性,减少人工工作量。选择满足企业特定需求的工具,如自动化电子邮件平台、社交媒体管理工具等,并根据目标市场和营销目标进行设置和配置。 将客户数据源(如 CRM 系统)与营销自动化工具集成,实现更个性化和针对性的营销。 通过 AI 分析结果调整和优化营销内容,确保相关性和有效性,提高营销活动的 ROI。持续监控营销活动的各项指标,定期更新营销自动化策略。 2. 目标市场分析: 使用 AI 工具进行市场细分,收集广泛的市场数据,包括消费者行为、购买历史、社交媒体互动等,基于分析结果将市场细分为不同的客户群体。 基于 AI 分析结果定制化营销策略,针对每个细分市场群体制定特定的策略,如定制化的广告内容、促销活动和沟通方式。持续监测营销活动的效果,定期更新市场数据,不断优化和调整营销策略。
2024-10-30
AI在未来运用在机器人上有哪些方面
AI 在未来运用在机器人上的方面包括: 1. 制造业:带来制造业的革命,如自适应机器人的应用。 2. 自动驾驶:自动驾驶车辆成为重要应用领域。 3. 人形机器人:在非结构化环境中的应用具有巨大价值。 4. 医疗领域: 护理/手术机器人:逐渐出现由 AI 驱动的机器人,护理等非生命直接相关的机器人会早于手术机器人。 人体健康模型:如“AI 虚拟病人”帮助药品在进入临床之前进行预筛查,未来可能出现模拟人体运转的 AGI 实现“防未病”和“真个性化”诊疗。 5. 农业:应用于田间管理的机器人能提高农业生产效率、可持续性和生产力。 6. 疾病检测与治疗:改善乳腺癌筛查,变革疾病的检测、预防和治疗方式。
2024-09-30
chatgpt4.0.1有什么新功能,比chatgpt4先进在哪些方面
ChatGPT 4.0.1 相较于 ChatGPT 4 具有以下新功能和先进之处: 1. 大大减少了幻觉,在内部对抗性设计的事实性评估中得分更高,比最新的 GPT3.5 高 19 个百分点。 2. 在遵循用户意图的能力方面有很大改进,在 70.2%的提示中,产生的响应比 GPT3.5 更受欢迎。 3. 在各种语言中的表现更优,包括低资源语言。 4. 知识更新方面,ChatGPT 4.0.1 知识更新到 2023 年 12 月,而 ChatGPT 4o 的知识更新到 2023 年 10 月。 需要注意的是,尽管 ChatGPT 4.0.1 有这些优势,但它仍存在与早期 GPT 模型类似的局限性,如对事实产生“幻觉”和出现推理错误等,在使用其输出时应谨慎。
2024-09-14
AI在法律行业中可以应用到哪些方面呢
AI 在法律行业中有以下应用方面: 1. 案例检索: 最好使用法律行业垂类的 AI 产品,通用型 AI 可能存在查不出来、数据不全或生成内容不满足需求的情况。 Prompt 指令词示例: 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。 预计效果:AI 系统将检索相关数据库,找出符合要求的判例,并提炼出关键判决理由和结果,形成摘要报告。 2. 提供法律建议: 可以采用 SWOT 分析法或 4P 原则等逻辑结构,例如使用 SWOT 分析法来评估一个商业合同的优势、劣势、机会和威胁,从而帮助客户完成更明智的交易。 从多个角度进行思考,比如在分析一个商事诉讼时,从市场趋势、竞争对手的行为、战略规划、财务状况以及市场前景等多个角度来思考诉讼策略,以确保为客户提供全面且深入的法律建议。 用简洁明了的语言总结核心观点和注意事项,例如概括出 5 点关于案件处理的核心观点,并列出 7 点在案件推进中需要特别注意的事项。 使用引号、分隔符号以及“首先、其次、最后”等连接词来组织 Prompt,让建议更有条理,通过 AI 给到更优质的信息。 赋予 AI 角色,比如“你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析”,以更有效地利用其数据处理和模式识别能力,提升律师的工作效率。 3. 处理信息检索与整理任务:律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,迅速获得案件准备所需的素材,花更多时间进行法律分析。 4. 自动化处理文档:律师可以指导 AI 生成和修改标准化合同,例如给出 prompt “根据提供的模板,自动生成一份关于 XX 事项的合同草案,并标注出需要人工审核的关键条款”,在保证合同质量的同时,大幅减少在文档起草和修订上的工作量。 5. 辅助整理案件事实和证据:在涉及复杂法律关系和前沿性的案件处理中,律师依靠自己的专业进行分析,发挥沟通能力获取细节信息和推进案件进度,利用 AI 来辅助整理案件事实和证据,减少大量工作时间。
2024-09-10
AI可以能改变普通人哪些方面
AI 可以在以下方面改变普通人的生活: 1. 提供个性化服务:如通过 Character.ai ,每个人都能拥有像钢铁侠中 Javis 一样的人工智能助手,帮助完成各种任务,重构如授课教师、游戏玩家、情感伴侣等各种服务。 2. 改变日常互动方式:像 iPhone 一样,生成式 AI 将改变我们与技术的日常互动方式,催生新的产品,如 Uber、DoorDash 和 Airbnb 等,并对现有产品进行超级增强,改善消费者体验和扩展性。 3. 降低智慧成本:人类的智慧成本高昂,而 AI 能够大幅降低这一成本。例如,最富有的人能雇佣专业医生和高素质家教,AI 则有可能让更多人获得类似的服务。 4. 应对全球性问题:AI 有潜力在应对气候变化、流行病等方面提供更智能的指导,改变各行各业,带来更长寿、健康和充实的生活。
2024-09-10
我要向一个做母婴大健康MCN公司的老板介绍我能用AI做什么,可以从哪些方面介绍
对于向母婴大健康 MCN 公司的老板介绍您能用 AI 做的事情,可以从以下几个方面展开: 1. 内容创作与优化 利用 AI 生成吸引人的母婴健康相关的文章、故事和科普内容,提高内容产出效率。 通过 AI 对已有的内容进行语法和逻辑检查,优化文案质量。 2. 个性化推荐 借助 AI 算法,根据用户的浏览历史、偏好和行为数据,为母婴用户精准推荐适合的产品、服务和内容。 3. 客户服务与支持 部署 AI 聊天机器人,能够实时回答常见的母婴健康问题,提供快速准确的服务。 4. 数据分析与洞察 运用 AI 技术对大量的用户数据进行分析,挖掘潜在的市场趋势、用户需求和消费行为模式,为公司的决策提供有力支持。 5. 营销与推广 利用 AI 进行广告创意生成和优化,提高营销活动的效果。 6. 视频制作与编辑 借助 AI 工具进行视频的剪辑、特效添加和字幕生成,提升视频制作的效率和质量。 7. 社交媒体管理 通过 AI 监测社交媒体平台上的舆论动态,及时发现和处理负面信息,维护品牌形象。 8. 预测与规划 基于 AI 的预测模型,对市场需求、销售趋势等进行预测,帮助公司制定更合理的业务规划。
2024-08-31
如何画热力图,帮助我们分析数据相关系数
以下是关于如何画热力图来分析数据相关系数的步骤: 1. 完成前面的 MMM 运行步骤。 2. 进行关联性分析,可绘制热力图(颜色可自行调整)。 3. 计算相关性,注意在真实场景中,若出现负相关性,需考虑是否缩减投入或进行其他决策。 4. 模型流程主要在前几步,后面的可视化和其他分析自由度较高。 您可以在 Colab 上的部署地址(https://colab.research.google.com/drive/1vzMbUuGsaFHlnl9CKFXgxXn8aqWaw60I?usp=sharing)直接进行测试,并欢迎提出新的优化意见。
2024-11-22
如何将知识库里的文件进行分类清晰数据,使其变得更加智能化
以下是关于如何将知识库里的文件进行分类清晰数据,使其变得更加智能化的方法: 1. 在线知识库 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 点击添加 Bot,并在调试区测试效果。 2. 本地文档 注意拆分内容,提高训练数据准确度,将海报的内容训练到知识库里面。 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大的章节名称内容放进来,章节内详细内容依次按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用 点击发布,确保在 Bot 商店中能够搜到。 4. 飞书知识库 在飞书里面选择对应的文件夹,一次最多智能选择 20 个文件(若文件大于 20 个可多建几个知识库)。 可以选择自动进行数据清洗,数据清洗是把数据进行类结构化整理,内容中的图片资料也会保留。 测试对话,基本反馈正常,目前 coze 存在不稳定版本,需要不断调试完善。 5. Excel 知识库 可以增加其他形式的知识库。 上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的 Sheet。 数据处理完成会显示 100%进度,加工出来的数据,点击添加 Bot,就增加到知识库中,然后测试发布和返回。 6. 网页知识库 有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂。 选择批量添加,写入画小二官网的地址,可根据需求添加自己的网站。 将网站所有的页面都扫描出来,点击确认,将全站数据解析并保存到知识库里面,按照默认自动清洗数据。 7. 创建知识库并上传文本内容 本地文档:在文本格式页签下,选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。单击下一步完成内容上传和分片。
2024-11-21
帮我生成一个个人的职业目标为数据分析师,职业规划为想要找到一个计算机行业类的公司,我的优势是社交方面和处理数据方面很强,我的2弱势是不太可以创新
以下是为您生成的以数据分析师为职业目标,且希望在计算机行业公司工作的职业规划建议: 首先,鉴于您在社交和处理数据方面的优势,您可以积极利用这两点。在社交方面,主动参与行业相关的社交活动、线上论坛或社群,扩大人脉资源,这有助于您获取更多的行业信息和潜在的工作机会。在处理数据方面,不断提升自己的专业技能,例如学习更高级的数据处理工具和技术,以提高工作效率和质量。 对于您在创新方面的弱势,建议您多关注行业内的创新案例和趋势,通过学习和模仿来逐渐培养创新思维。可以参加一些创新思维的培训课程或者阅读相关的书籍。 在求职过程中,有针对性地投递计算机行业中对数据分析师有需求的公司。准备一份精心制作的简历,突出您在社交和数据处理方面的优势,并诚实地提及您在创新方面的不足以及您为改进所做的努力。 进入公司后,持续学习和提升自己,与团队成员保持良好的沟通和合作,不断积累项目经验,逐步提升自己在数据分析领域的专业能力和影响力。
2024-11-20
数据中心运维服务的智能体构建
以下是关于数据中心运维服务智能体构建的相关内容: 一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率 逐步搭建 AI 智能体: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 4. 把配置好的工作流(如整理入库、选择内容)添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可按需求和实际效果优化调整)。完成上述步骤后,能在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。 智能体在品牌卖点提炼中的应用 搭建一个智能体帮助提炼卖点: 1. 确定智能体的结构:按照市场营销的逻辑组织智能体的结构。 2. 搭建完整智能体: 以品牌卖点提炼六步法为核心的流程,包括探索、排列、抽取、收敛、确认、应用流程。 加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等。 还包括一些在后续品牌卖点应用过程中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。
2024-11-19
ai爬数据
以下是为您提供的关于 AI 相关的一些信息: 网页抓取方面:过去两周出现了许多 AI 驱动的网页信息自动抓取工具。当前用 Gen AI 做网页抓取并非主流技术方案,但具有能更好地理解分析非结构化数据、实现更精准抓取等优势。比较受欢迎的 AI 网页抓取小工具包括:Hexomatic(https://hexomatic.com/)、WebscrapeAI(https://webscrapeai.com/)、Kadoa(https://www.kadoa.com/)。 聊天机器人方面:6 月访问量的排名情况为,ChatGLM 智谱清言排名 16,访问量 364 万,相对 5 月变化 0.11;MyShell 排名 17,访问量 338 万,变化 0.003;讯飞星火排名 18,访问量 272 万,变化 0.018;ciciai 排名 19,访问量 252 万,变化 0.14;DeepSeek 排名 20,访问量 205.4 万,变化 0.249。 Prompts 方面:4 月访问量的排名情况为,Lexica 排名 1,访问量 349 万,相对 3 月变化 0.039;Promptchan 排名 2,访问量 279 万,变化 0.203;prompthero 排名 3,访问量 130 万,变化 0.312;提示工程指南排名 4,访问量 81.5 万,变化 0.291;LetsView Chat 排名 5,访问量 66 万,变化 0.087;AIPRM 排名 6,访问量 58 万,变化 0.521;PromptBase 排名 7,访问量 54 万,变化 0.119;ChatGPT Cheat Sheet & Quick Reference 排名 8,访问量 45.8 万,变化 0.048;Prompt Hunt 排名 9,访问量 42 万,变化 0.055;Learn Prompting 排名 10,访问量 36.1 万,变化 0.284。
2024-11-19
优秀的数据集网站
以下为一些优秀的数据集网站及相关数据集介绍: 文本分类: ,更新日期为 43040,暂时不能下载,已经联系作者,等待反馈。 ,更新日期 43160。 ,更新日期 43160。 ,更新日期 43160。 ,更新日期 43160。 QA: ,更新日期 43721,由微软研究院提供。 ,更新日期未知,由斯坦福提供。 ,更新日期未知,由 Facebook 提供。 文本匹配: ,更新日期 43412,来源为寻药寻医网和国防科技大学信息系统及管理学院。 ,更新日期 42999,由唐善成、白云悦、马付玉及西安科技大学提供。
2024-11-15
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
你能为我介绍一些最新的AI产品吗?能涉及变现的更好~
以下为您介绍一些最新的涉及变现的 AI 产品: 在电商领域: “电商:带货本地生活”,AI 数字人上岗带货本地生活电商,一个月多赚 3 万。 “电商:婴儿的四维彩超 AI 预测”,通过 AI 工具提前还原宝宝的四维彩超模样进行变现。 “电商:小红书 AI 绘画变现”,分享小红书最火的三种 AI 绘画类商品的变现方式。 在写作方面:“Grammarly、秘塔写作猫”是 AI 智能写作助手,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,以及进行智能润色和内容创作辅助。 在商品推荐方面:“淘宝拍照搜商品”通过图像识别为用户推荐相似商品;“大众点评智能推荐”基于用户口味偏好推荐美食。 在语音助手方面:“小爱同学、Siri”可根据语音识别和自然语言理解技术为不同需求定制专属语音助手,如控制智能家居、回答问题、进行语音交互和任务处理等。 在健身领域:“Keep 智能训练计划”利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 在客服方面:“阿里小蜜等电商客服”为企业提供智能客服解决方案,可自动回答客户问题,处理订单查询等任务。
2024-10-25
你了解哪儿些大模型在电商行业供应链物流领域的应用,如果能举例阿里、淘宝、抖音、京东等涉及到电商的公司进行说明就更好了
目前在电商行业供应链物流领域,一些大模型的应用还处于不断发展和探索的阶段。 阿里巴巴:可能利用其强大的技术能力和数据优势,通过大模型优化物流路径规划、库存管理和订单预测等方面,提高物流效率和降低成本。 淘宝:或许借助大模型来分析消费者的购买行为和偏好,从而更精准地进行商品推荐,并优化物流配送的调度。 抖音:可能运用大模型对用户的兴趣和行为进行深度挖掘,以实现更高效的商品匹配和物流配送安排。 京东:有可能利用大模型改进仓储管理、物流配送的智能调度,以及预测商品的需求和销售趋势。 但需要注意的是,具体的应用情况和效果会受到多种因素的影响,包括数据质量、算法优化、业务场景的复杂性等。
2024-09-25