Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

数据标注与Ai的大模型是怎样的环节

Answer

在 AI 领域中,数据标注与大模型有着密切的关系。

对于大模型而言:

  1. 数据清洗:在训练前对数据预处理,移除或修正有偏见、歧视等不道德内容的数据。
  2. 算法设计:减少偏见和不公平性,平衡数据集中不同群体的代表性。
  3. 道德和伦理准则:制定明确准则指导开发和使用。
  4. 透明度:对模型能力和局限性保持透明,告知用户可能的偏差和不确定性。
  5. 用户反馈:允许用户反馈以识别和纠正不道德行为。
  6. 持续监控:监控模型表现,确保输出符合道德和伦理标准。
  7. 人工干预:在可能涉及道德伦理问题时引入人工审核和干预。
  8. 教育和培训:对使用人员进行道德伦理方面的教育和培训。

在数据标注方面:

  1. 数据清洗工作占据 AIGC 时代模型训练 70%-80%的时间,必不可少,因为数据质量决定机器学习的上限。
  2. 需筛除分辨率低、质量差、存在破损及与任务目标无关的数据,去除可能包含的水印、干扰文字等。
  3. 数据标注分为自动标注和手动标注,自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注依赖标注人员。例如使用 BLIP 可对数据进行自动标注 caption。

然而,在中国的 AI 创业生态中,存在一些问题:

  1. 高质量的数据处理服务稀缺。
  2. 数据获取门槛低,但高质量数据获取困难,中文互联网数据质量相对较低。

总之,确保 AI 大模型的道德和伦理性以及获取高质量的数据标注是复杂且持续的挑战。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:大模型具有道德观念吗?

1.数据清洗:在训练模型之前,对数据进行预处理,移除或修正带有偏见、歧视或其他不道德内容的数据。2.算法设计:设计算法以减少偏见和不公平性,例如通过平衡数据集中不同群体的代表性。3.道德和伦理准则:制定明确的道德和伦理准则,指导模型的开发和使用。4.透明度:对模型的能力和局限性保持透明,告知用户模型可能存在的偏差和不确定性。5.用户反馈:允许用户提供反馈,以识别和纠正模型的不道德行为。6.持续监控:持续监控模型的表现,确保其输出符合道德和伦理标准。7.人工干预:在模型的输出可能涉及道德和伦理问题时,引入人工审核和干预。8.教育和培训:对使用模型的人员进行道德和伦理方面的教育和培训。尽管采取了上述措施,但确保AI模型的道德和伦理性仍然是一个复杂且持续的挑战。随着技术的发展,相关的道德和伦理标准也在不断演进。内容由AI大模型生成,请仔细甄别

中国大模型面临的真实问题:登顶路远,坠落一瞬

接下来,让我们把目光转向数据这个同样关键的要素。在人工智能的世界里,数据就像是原油,而高质量的数据则是精炼后的汽油。虽然OpenAI训练大模型所用的中文数据也源自中国的互联网平台,但他们在数据处理上的额外努力,就像是将粗糙的原石打磨成璀璨的钻石。这种数据质量的提升,远非简单的数据标注工作所能企及,而是需要一支专业团队进行深度的数据清洗和精细整理。然而,在中国的AI创业生态中,高质量的数据处理服务就像是稀缺资源。在国内,数据获取的门槛相对较低,这看似是一个优势。然而,虽然数据获取容易,但高质量数据的获取却是另一回事。国内的大模型主要以中文数据为基础,这看似是一个自然的选择。但业内普遍认为中文互联网数据的质量相对较低。这种情况让人想起了信息论中的"垃圾进,垃圾出"原理。如果输入的数据质量不高,那么即使有最先进的算法,输出的结果也难以令人满意。这个现象在IT从业者的日常工作中得到了印证。当需要搜索专业信息时,他们往往会首选Google、arXiv或Bing等国际平台,而不是国内的搜索引擎。

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

首先,我们需要对数据集进行清洗,和传统深度学习时代一样,数据清洗工作依然占据了AIGC时代模型训练70%-80%左右的时间。并且这个过程必不可少,因为数据质量决定了机器学习的上限,而算法和模型只是在不断逼近这个上限而已。我们需要筛除分辨率较低,质量较差(比如说768*768分辨率的图片< 100kb),存在破损,以及和任务目标无关的数据,接着去除数据里面可能包含的水印,干扰文字等,最后就可以开始进行数据标注了。数据标注可以分为自动标注和手动标注。自动标注主要依赖像BLIP和Waifu Diffusion 1.4这样的模型,手动标注则依赖标注人员。(1)使用BLIP自动标注caption我们先用BLIP对数据进行自动标注,BLIP输出的是自然语言标签,我们进入到SD-Train/finetune/路径下,运行以下代码即可获得自然语言标签(caption标签):

Others are asking
国内有什么免费好用的文字转图片AI吗?
目前国内免费好用的文字转图片 AI 工具包括: 1. DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多相关工具。但需注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
小红书与AI的结合
以下是关于小红书与 AI 结合的相关内容: 汉青老师曾分享,生成式 AI 的内容与传统社交媒体内容共存,如小红书、抖音、微信等。短期内可能因新鲜感获流量红利,长期人们仍在意高质量内容。我们掌握了多种先进工具,但应慢下节奏感受真实世界和身边普通人。目前还没想好具体如何与 AI 结合。 有朋友的朋友圈题材提到:同一条街道上,年轻女孩在街上,孤独老人在围墙里;一张照片传递了两种稳固关系和一种爱意;有人认为电商快递外卖的优势是劳动力,图中女孩的状态令人垂头丧气。 还有作者将 AI 与大理石这一古典媒介结合,认为当历史厚重与科技轻盈相遇会激发艺术可能。 此外,2024 年 11 月 30 日举办的 Show Me 扣子 AI 挑战赛大消费行业专场活动中,介绍了扣子平台最新公测的各项能力。活动旨在推动 AI 技术在大消费领域的应用与创新,为内容生产者寻求更多变现可能。获奖作品如“买买买!产品买点提炼神器强化版”专注于市场营销领域,能提炼卖点、生成营销文案等。
2025-02-17
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
有哪个AI可以读懂建筑施工图纸
以下是一些能够读懂建筑施工图纸的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载的建筑大模型 ArchiMaster 由建筑设计院开发,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,为设计师提供全新设计模式,在住宅设计早期可引入标准和规范约束 AI 生成的设计结果,保证设计合规性。 4. Fast AI 人工智能审图平台:从住宅设计图构件开始,形成全自动智能审图流程,能自动导入、划分区域、识别构件、审查强条和导出结果,同时为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-17
和教师相关的ai
以下是与教师相关的 AI 应用: 1. 帮助教师获取信息和学习:可以要求人工智能解释概念,获取良好结果。例如,可参考。 2. 作为自动导师:。但使用时需注意可能产生的幻觉,关键数据要根据其他来源仔细检查。 3. 重构教育服务:授课教师、游戏玩家、情感伴侣等服务都可被 AI 重构。 4. 作为数字教师:借助大型语言模型,人工智能生成的角色可以像古时候的苏格拉底、孔子一样,采用对话式、讨论式、启发式的教育方法授课。例如,让牛顿亲自授课《牛顿运动定律》,让白居易为你讲述《长恨歌》背后的故事。能实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 5. 生成作业和试题:AI 可以生成作业单和各类测试题,如模仿中高考、托福雅思、SAT(美国高考)、GRE(美国研究生入学考)等的试题,为教师提供真题库,为学生提供错题练习库。
2025-02-17
目前ai有哪些活动
目前的 AI 活动包括: 1. 全新 AI 整活计划第七期:一起去抓小精灵! 可能会是新的流量爆款,ins 上已经火爆。 给大家准备好了海辛和阿文的教程。 活动链接:https://waytoagi.feishu.cn/wiki/DQj6waWzkiFkRQkSm1Ic5YKFnoe 2. 阿里云 AI 实训营全新升级上线!! 免费学习,交作业拿好礼。 共学、共享、共实践,1 月 24 号正式开课。 阿里云资深专家带你掌握 AI 应用场景最新实操。 加入学习链接:https://click.aliyun.com/m/1000401471/ 3. 投稿内容:使用 DeepSeek 写一篇以“反转”为主题的 1000 字内短篇小说,尽情挥洒你的创意叭! 投稿地址:通往 AGI 之路腾讯频道【deepseek 专区】点击投稿 小程序://腾讯频道/tN8kNr1nLwcAC0b 2 月 16 日晚 8 点截止并现场直播评选如何用 AI 评选出最佳小说家! 活动详情: 4. 摊位活动: 乐易科学院:通过 AI 的技术,结合量子、暗物质、天体运行规律等能量形式从科学、物理学、天文学、心理学等方面讲解国学和传统文化。可以通过技术方式批八字、调风水、进行性格色彩分析,让每个人找到方向,成为更好的自己。摊位区域:C,摊位编号:27,摊位类型:玄学+科学。 AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发:摊位区域:C,摊位编号:76,摊位类型:游戏宣传。 AI 人像摄影绘画:摊位区域:C,摊位编号:77,摊位类型:照片。 主题是:B2B AI 营销与 AI 落地项目快速🔜落地~ 具体涵盖 3 个方向: AI 训练 to b,出应用,智能体 agent,文生图生视频都涉及。 美国独立站搭建,工作流给模特戴上珠宝饰品。 Google seo 与 AI 结合。 技术尝试: 好消息,代码写出来了,可以运行,也有 bug。 最近还做出来很多 AI 工具,帮 HR 筛选简历的 AI 工具,行业新闻 AI 生成与自动推送的工作流,小红书 AI 生成的工具,Newsletter AI 生成的工具…… 摊位区域:C,摊位编号:58,摊位类型:产品展示。 5. 030 基础建站相关活动: 共学活动课程安排:近日的共学活动包括建站、编程、用 AI 手搓机器人等课程,并有李吉刚等老师授课。 课程准备与作业:课程有回放链接,会在 B 站专题呈现,还有小作业,部分课程需提前准备材料和购买清单。 线下活动规则:学校若未组队可报名,满 30 人寄物料。活动有创业者、投资人、交易所三个角色,有初始资本,通过股权和现金交换,最终选出最佳投资人和创业者。 线下活动奖励:最佳投资人和创业者有礼品、奖品,config UI 赛道的优秀者可去东京参加 CCS 东京的 config UI 大会,包机酒。 线下活动赞助:活动有豆包、飞书等大厂工具赞助。 Config UI 共学活动:11 月 16 日至 17 日举办首次活动,有优质创作者和开发者参与,提供了课程和回放,左侧“社区共创项目”有文档内容,18 号海鑫、阿文将讲解搭建基础和小应用,共学结束后将开展第二期。 编程课程:大雨老师的编程课原本 10 天压缩为 2 天,先给概念,后续可深入学习。 AIGC 营销视频大赛:伊利主办,奖金丰厚,赛道多,明天早上 10 点有直播,下周开始相关教学,鼓励以赛代练,活动信息在知识库首页、网站和公众号。 交流渠道:QQ 群号码后续会公布,活动相关疑问可在群里交流。
2025-02-17
开一个AI数据标注公司的落地和具体实操应当如何
开设一家 AI 数据标注公司需要以下落地和具体实操步骤: 1. 市场调研 了解当前 AI 数据标注市场的需求和趋势。 分析竞争对手的优势和不足。 2. 团队组建 招聘具备数据标注技能和经验的人员,包括标注员、质检员等。 对团队进行培训,确保他们熟悉标注规范和流程。 3. 制定标注规范 明确不同类型数据的标注标准和要求。 建立质量控制流程和标准。 4. 技术和工具准备 选择适合的数据标注工具和软件。 搭建稳定的 IT 基础设施,保障数据安全和存储。 5. 寻找客户和项目 与 AI 企业、科研机构等建立联系,争取合作机会。 展示公司的标注能力和优势。 6. 项目管理 合理安排标注任务,确保按时交付。 及时处理项目中的问题和变更。 7. 质量监控 定期对标注结果进行抽检和评估。 依据质量反馈对标注流程和人员进行调整和优化。 8. 合规与法律事务 确保公司的运营符合相关法律法规。 处理好数据隐私和知识产权等问题。 9. 财务管理 制定合理的预算和成本控制策略。 确保公司的资金流稳定。 10. 持续改进 关注行业动态,不断改进标注技术和流程。 提升公司的竞争力和服务质量。
2025-02-17
有关于数据标注行业发展趋势的文章吗?
以下是关于数据标注行业发展趋势的相关内容: 数据标注行业呈现出以下几个主要的发展趋势: 从量到质的转变:早期大模型训练侧重通过大量算力和大规模数据集来提升性能,但随着技术进步,数据质量成为提高模型性能的关键瓶颈,更注重提高数据的质量和相关性,而非单纯增加数据量和算力。 数据标注向知识密集型转变:多模态模型需处理多种类型数据,使数据标注过程更细致复杂。例如进行情绪判断或推理时,需要更高水平的理解和分析能力。这要求从事标注的人员不仅要接受专业培训,在某些情况下还需要特定领域专家执行。 数据标注的自动化和合成数据的使用:随着人工智能技术发展,数据标注领域正经历自动化转型,可使用大模型自动标注数据,提高标注效率并减少人力成本。合成数据使用越来越普遍,因其成本较低、能避免隐私问题及可生成长尾场景数据。例如在自动驾驶领域,可用于生成罕见但关键的路况场景,提高模型的鲁棒性和准确性。 此外,相关法律法规也对生成式人工智能技术研发过程中的数据标注做出规定,如提供者应制定清晰、具体、可操作的标注规则,开展数据标注质量评估,对标注人员进行必要培训等。
2025-02-17
数据标注这个行业前景如何
数据标注行业具有一定的前景,但也面临着一些变化和挑战。 从前景方面来看: 1. 数据质量成为提高模型性能的关键瓶颈,这使得数据标注的重要性日益凸显。 2. 多模态模型的发展需要更加细致和复杂的数据标注,为行业带来了更多需求。 3. 随着技术的进步,数据标注不再是简单的劳动力作业,而是向知识密集型转变,这要求从事标注的人员具备更高的专业水平和特定领域的知识,从而提升了行业的专业性和价值。 然而,也存在一些挑战: 1. 数据标注工作繁琐,数据清洗工作占据了大量时间。 2. 合成数据的使用虽然带来了便利,但也存在与真实数据分布不一致可能导致模型偏差等风险。 在数据标注的具体操作上,数据标注可以分为自动标注和手动标注。自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注则依赖标注人员。例如使用 BLIP 自动标注 caption 时,需要进行一系列的操作和配置。
2025-02-05
ai训练师和标注师的工作区别是什么
AI 训练师和标注师的工作存在以下区别: 1. 工作重点:标注师主要负责编辑和扩大数据集,对数据进行标注和整理;而训练师在训练模型时涉及数据清洗、数据生成、对齐等操作,需要用到 Prompt 工程的地方较多。 2. 技能要求:标注师侧重于对数据的准确理解和标注能力;训练师则需要具备更深入的技术知识,包括对模型训练原理和相关技术的掌握。 3. 工作影响:标注师的工作直接影响数据集的质量和丰富度,为模型训练提供基础;训练师的工作决定了模型的训练效果和性能。
2024-11-28
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
AI和人工标注相关
以下是关于 AI 和人工标注相关的内容: 在 Agent 相关比赛的赛道介绍中,涉及到多个与 AI 和人工标注相关的参考方向,包括: 1. 内容生成:AI 可自动编写文章并选择或生成相应图片。 2. 图像标注:AI 能识别和理解图片内容,并生成相应文字描述。 3. 图文匹配:为给定图片找到合适文字描述,或为给定文字找到匹配图片。 4. 数据可视化:将复杂数据用图表、信息图等方式可视化展示,使解读更直观简洁。 5. 设计辅助:例如生成 LOGO、海报设计等。 6. 自动化排版:根据文本内容与结构自动进行页面布局和美观排版。 7. 图文识别:借助 OCR 技术抓取图文内容后,AI 能够理解并处理。 8. 新闻和社交媒体:AI 可对大量新闻和社交媒体信息自动编辑和汇总,生成图文摘要。 9. 艺术创作:辅助绘画、音乐创作。 在 OpenAI O1 的训练中,可能采用的训练数据包括人工标注数据和合成数据。对于人工标注数据,会人工标注一批 COT 思考过程,形成<问题,思考过程(包括思考过程中出现的错误及错误修正过程),答案>,用这些数据 SFT 一下 o1 初始的模型,启动其输出模式。但人工标注存在难度大、成本高、可扩展性差的问题,优点是质量较高。之后可以采用合成数据的模式,如从人工标注的 COT 里截取片段,用 MCTS 树搜索方式补齐后续推理过程,或者对于有确定标准答案的逻辑问题,通过不断试错的模式搜索答案,这些正确或错误的答案都可用于训练 o1 模型。
2024-10-14
如何创建一个应用于教学的各个环节,如备课体系、作业批改、出题建议、辅助出题等的智能体?
要创建一个应用于教学各个环节的智能体,您可以参考以下步骤和考虑以下方面: 1. 提前收集教育领域的需求,例如让云谷老师协助收集需求和案例,社群小伙伴帮助实现。这些需求可以包括办公提效的具体场景、家校沟通、个性化教育、心理疏导、备课体系、作业批改、出题建议、辅助出题、建立孩子的成长体系记录、孩子成长的游戏(如寻宝游戏)、朗读(模拟老师泛读,学生背诵,AI 评判)、文生图和文生视频在备课时的针对性、学科本身的教育辅助、分析学生行为并给出策略(基于教育心理学)、教师模拟培训、公开课备课辅助、指导新老师处理学生矛盾和家长问题以提高沟通能力等。 2. 明确最终交付物的形态和背后的思考,使需求描述更清晰。 3. 注册智谱 Tokens 智谱 AI 开放平台(https://bigmodel.cn/),获取资源包。新注册用户可获得 2000 万 Tokens,也可通过充值/购买多种模型的低价福利资源包,或者共学营报名赠送资源包。 4. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目可能会使用到 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 等模型。 5. 进入智能体中心 我的智能体,开始创建智能体。为了照顾初学者,可以手把手进行编辑,完成一个简单智能体的搭建。 此外,在创建过程中,还可以考虑以下相关的产品和服务: 1. 具身智能的企业产品。 2. 3D 眼镜、AI 绘本、AI 图书等。 3. 学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体等。 4. Zeabur 等云平台、0 编码平台。 5. 大模型如通义、智谱、kimi、deepseek 等。 6. 编程辅助、文生图工具(如可灵、即梦等)。 需要注意的是,创建这样的智能体需要综合考虑多方面的因素,并不断优化和改进,以满足教学的实际需求。
2025-02-10
AI在哪些电力设备监测环节可以发挥作用
AI 在电力设备监测中可以发挥以下作用: 1. 实时监测:AI 可以通过传感器和摄像头等设备实时监测电力设备的运行状态,包括温度、电压、电流等参数,并及时发现异常情况。 2. 故障诊断:AI 可以利用机器学习算法对电力设备的历史数据进行分析,建立故障模型,从而实现对设备故障的快速诊断和预测。 3. 维护管理:AI 可以根据电力设备的运行状态和历史数据,制定科学合理的维护计划,提高设备的可靠性和使用寿命。 4. 安全预警:AI 可以通过对电力设备的监测和分析,及时发现安全隐患,并发出预警信号,避免安全事故的发生。 5. 能源管理:AI 可以通过对电力设备的监测和分析,优化能源利用效率,降低能源消耗和成本。 总之,AI 在电力设备监测中可以发挥重要作用,提高设备的可靠性和安全性,降低能源消耗和成本,为电力行业的可持续发展提供有力支持。 (以上答案可能无法准确回答问题,建议在引用内容里进一步确认)
2024-04-16
大模型评测
以下是关于大模型评测的相关信息: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造中文大模型的知识评估基准: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:SuperCLUE 琅琊榜 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 此外,还有小七姐对文心一言 4.0、智谱清言、KimiChat 的小样本测评,测评机制包括: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试;第二轮是推理能力(CoT 表现);第三轮是文本生成能力(写作要求执行);第四轮是提示词设计能力(让模型设计提示词);第五轮是长文本归纳总结能力(论文阅读)。 测试大模型质量好坏时,常用的问题包括检索和归纳、推理性、有日期相关历史事件等。以下是几个专业做模型测评的网站:
2025-02-17
ai大模型
AI 大模型是一个复杂但重要的概念。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
2025-02-17
我是一个ai小白,请给我推荐一个语言大模型的提示词优化工具
以下为您推荐两个语言大模型的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词需内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt Perfect: 能够根据输入的 Prompt 进行优化,并给出优化前后的结果对比。 适合写论文、文章的小伙伴,但使用该能力需要消耗积分(可通过签到、购买获得)。 访问地址:
2025-02-17
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
大模型的基本原理
大模型的基本原理如下: 1. 模仿人类大脑结构,表现出人的特征,应对大模型回答不及预期的解决之道与人与人交流沟通的技巧相似。 2. GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer): 生成式(Generative):大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从提示词“How”开始,依次推理计算出“are”“you”等,直到计算出下一个词是的概率最大时结束输出。 3. 通俗来讲,大模型通过输入大量语料来让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后进行推导(infer),如进行翻译、问答等。 4. 在 LLM 中,Token 被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时会对其进行数字化,形成词汇表。 5. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签自主发现规律,强化学习从反馈里学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,生成只是大语言模型的一个处理任务。 6. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,基于自注意力机制处理序列数据,不依赖 RNN 或 CNN。
2025-02-17
千帆大模型开发平台
百度智能云的千帆大模型平台在解决大模型的调用、开发和应用开发方面表现出色。它支持调用文心大模型全系列模型,并提供全面的工具链,支持定制化的模型开发。在应用开发上,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 2024 年上半年,百度智能云在 MaaS 市场和 AI 大模型解决方案市场中均获得第一名,市占率分别为 32.4%和 17%。MaaS 业务主要依托百度智能云千帆大模型平台提供服务,AI 大模型解决方案方面沉淀了八大行业解决方案。在 2024 百度世界大会上,百度智能云千帆大模型平台发布了工作流 Agent 能力,有助于企业更稳定、高效地实现多任务分解和执行。
2025-02-17