生成式 AI 具有广泛的应用场景,包括但不限于以下方面:
原文地址:https://a16z.com/2023/02/07/everyday-ai-consumer/发表时间:2023年2月7日作者:Connie Chan & Justine Moore翻译:通往AGI之路,若有瑕疵之处,请在段落评论中斧正,谨此致谢我们已经进入了生成式AI的时代。它的应用场景无处不在——从[写作文](https://www.wsj.com/articles/chatgpt-wrote-my-ap-english-essayand-i-passed-11671628256)到[创建漫画](https://www.reddit.com/r/artificial/comments/1027spa/in_3_months_ive_created_3_comics_and_3_mangas/)再到[编辑电影](https://twitter.com/AlphaSignalAI/status/1618026300421332993)——其采用速度已经超过了过去十年的每一项消费技术趋势。文本生成器ChatGPT在短短五天内就[超过](https://twitter.com/gdb/status/1599683104142430208?lang=en)了一百万用户,[数千万](https://techcrunch.com/2022/12/01/lensa-ai-climbs-the-app-store-charts-as-its-magic-avatars-go-viral/)的消费者已经创建了AI头像。每当新技术如此迅速地吸引消费者的注意时,都会引发一个问题:这里是否真有实质性的价值?我们相信答案无疑是肯定的。生成式AI将成为创始人构建具有定义性产品类别的下一个重要平台。就像iPhone革命性地改变了我们与技术的日常互动方式——催生了Uber、DoorDash和Airbnb等产品一样——生成式AI将改变我们的日常生活。除了创造新的产品类别,AI还将对现有产品进行超级增强,改善消费者体验并使其更易于扩展。
生成式人工智能是一种人工智能技术,它能够生成新的、未曾存在的内容。这些内容可以是多模态的,包括:文本:例如文章、报告、诗歌等图像:例如绘画、设计图、合成照片等音频:例如音乐、语音、环境声音等视频:例如电影剪辑、教程、仿真等[heading3]应用场景[content]Generative AI可以应用于广泛的场景,例如:文档摘要:将长篇文章或报告总结为简短、精准的摘要信息提取:从大量数据中识别并提取关键信息代码生成:根据用户的描述自动编写代码营销活动创建:生成广告文案、设计图像等虚拟协助:例如智能聊天机器人、虚拟客服等呼叫中心机器人:能够处理客户的电话请求[heading3]如何工作?[content]1.训练阶段:Generative AI通过从大量现有内容(文本、音频、视频等)中学习,进行训练。训练的结果是一个“基础模型”。2.应用阶段:基础模型可以用于生成内容并解决一般性问题。它还可以使用特定领域的新数据集进一步训练,以解决特定问题,这样就可以得到一个量身定制的新模型。[heading3]Google Cloud的工具[content]Vertex AI:这是Google Cloud上的端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型。Generative AI Studio:这是一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式AI模型,无需代码或代码量少。Model Garden:这是一个平台,可以让你发现Google的基础和第三方开源模型,并与之交互。它提供了一组MLOps工具,用于自动化机器学习管道。
生成性AI是一种机器学习类别,计算机可以根据用户的提示生成原始的新内容。目前,文本和图像是这项技术的最成熟应用,但几乎在每一个创意领域都有工作在进行,从动画、音效、音乐,甚至到创造具有完整性格的虚拟角色。当然,AI在游戏中并不是什么新鲜事。即使是早期的游戏,如雅达利的Pong,也有计算机控制的对手来挑战玩家。然而,这些虚拟的敌人并不是我们今天所知道的AI。它们只是由游戏设计师制定的简单脚本程序。它们模拟了一个人工智能对手,但它们不能学习,它们的能力只取决于创建它们的程序员。现在与以前的不同之处在于,由于更快的微处理器和云技术,我们有了更多的计算能力。有了这种能力,我们可以构建大型的神经网络,这些网络可以在高度复杂的领域中识别模式和表示。这篇博文分为两部分:第一部分包括我们对游戏领域的生成性AI的观察和预测。第二部分是我们对该领域的市场地图,概述了各个细分市场并确定了每个市场的关键公司。