Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

临床医生哪些方面可以用的到ai

Answer

临床医生在以下方面可以用到 AI:

  1. 医学影像分析:AI 可用于辅助分析 X 射线、CT 扫描和 MRI 等医学图像,以辅助诊断疾病。
  2. 药物研发:加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。
  3. 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。
  4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。
  5. 医疗保健交付和后勤功能:例如文档工作可交给 AI 书记员。
  6. 初级医疗服务中的分诊:依赖聊天机器人进行分诊。
Content generated by AI large model, please carefully verify (powered by aily)

References

新工业革命:生物技术×人工智能

我们今天正站在这个转折点上。直到现在,医疗保健和生物技术仍然大量依赖服务——由受过专业培训的科学家和[医生](https://a16z.com/2019/06/13/ai-doctor-deep-medicine-topol/)提供——这些服务是算法无法替代的,更不用说为公司增加足够的价值来采纳它们了。但现在,我们正处于一个革命的起点,[AI正在](https://a16z.com/2019/11/19/ai-industrializing-discovery-biology-healthcare/)工业化生物制药和医疗保健,它被应用于从[药物设计](https://a16z.com/2020/05/26/investing-insitro/)和[诊断](https://a16z.com/2017/03/01/going-deeper-into-freenome/)到[医疗保健交付](https://a16z.com/2021/07/12/investing-in-bayesian-health/)和[后勤功能](https://a16z.com/2021/02/09/administration-healthcare-back-office-innovation/)的各个方面。(关于在生物学中应用AI的讨论经常出现的问题或挑战,我在[此处](https://a16z.com/2018/02/28/black-box-problem-ai-healthcare/)解决了医疗保健中AI的“黑箱”问题;并在[此处](https://a16z.com/2021/06/15/ai-is-too-dumb-for-now-2/)解决了我们获取智能[与“愚蠢”]AI的需求问题。)[heading4]但现在,我们正处于一个革命的起点,AI正在使生物制药和医疗保健产业化,并且它被应用到从药物设计和诊

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

Others are asking
请给出目前比较火的各垂类AI工具名称
以下是目前比较火的各垂类 AI 工具: 图像生成器:有 14 个工具,如 Midjourney 等。 AI 聊天机器人:有 8 个工具,如 Claude、ChatGPT、Bing Chat 等。 AI 写作生成器:有 7 个工具,如 Rytr、Copy AI 等。 视频生成器:有 5 个工具。 语音和音乐:有 5 个工具。 设计:有 4 个工具,如 Canva 等。 其他:有 7 个工具。 此外,还有以下一些热门的 AI 工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。
2025-02-18
如何制作人事专员ai客服
要制作人事专员 AI 客服,可以参考以下步骤: 1. 明确功能范围: 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“自己的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能作为“微信客服助手”发布在微信公众号上。 2. 准备相关内容: 根据 Bot 的目的和核心能力编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建一个用于回答 AI 相关知识的知识库。 由于要按照一定规则处理知识,创建一个工作流来控制 AI 按照要求处理信息。 准备好微信公众号,以便发布机器人。 此外,智能客服助手的核心构思在于利用企业已有的知识积累,结合大模型的强大能力,为用户提供准确且简洁的答案。具体通过创建企业私有知识库,收录企业过去的问答记录和资料,再利用大模型对用户咨询的问题进行处理,确保回答的准确性和一致性,还能在必要时提供原回答的完整版,以满足用户的深度需求。同时要对接人工客服,在智能助手无法解决用户问题时,让用户快速转接到人工客服,确保问题及时解决,这种人机结合的模式有助于提升整体服务质量和客户满意度。
2025-02-18
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
AI提效
以下是关于 AI 提效的相关内容: 在大淘宝设计部,今年通过持续探索和实战考量,将 AI 作为工具,主要使用 Midjourney 和 Stabel Diffusion 等,辅助使用 RUNWAY 和 PS beta 等。AI 改变了设计工作流的传统步骤,在营销设计中,整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。具体效果包括创意多样,项目中不同创意概念的提出数量增加了 150%;执行加速,设计师在创意生成阶段的时间缩短了平均 60%;整体提效,从创意发散到落地执行品效都有显著提升。 在软件工程方面,AI 正深刻变革软件工程,涵盖自动代码生成、智能调试、AI 驱动的 DevOps 和敏捷开发优化。自动代码生成工具提高编程效率,AI 也助力智能测试与运维。DevOps 迎来 AI 驱动的 CI/CD 和 AIOps,提升部署自动化和智能监控能力。AI 让敏捷开发更加高效,通过自动化需求分析、测试优化和团队协作增强生产力。 夙愿学长曾给创业小团队定制过 AI 提效解决方案,他将 AI 工作流融入工作中,把 80%重复低产出的工作“外包”给 AI 干,自己只干 20%真正有价值的事情,从而实现了生活和工作的良好改变,走上了 Work Life Balance 的道路。
2025-02-18
ai生成短视频,有没有免费的工具
以下是一些免费生成短视频的工具: 1. Project Odyssey:这是全球最大的生成式 AI 视频竞赛之一,提供超过 30 种工具的免费额度,累计超过 75 万美元。 2. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,剪映则可以根据脚本自动分析并生成对应的素材和文本框架。 3. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频,且免费无限生成。 4. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 5. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助您快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-18
AI如何接入APP
以下是将 AI 接入 APP(以微信为例)的详细步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时已接通。 2. 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”,其中的“中文部分,便是设置 AI 提示词的地方,您可以进行更改。 3. 此后,进行任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”。 4. 然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 5. 再往后就是添加插件,讲解得非常清晰,完成上述步骤后,相信您也能搞定插件的安装。点击文章,会直接定位到您该操作的那一步。 6. 若认为上述步骤简单,尚有余力,可以继续看。 开始部署(这里继续): 1. 复制代码时注意复制全,每次只需要粘贴一行,然后点击一次回车。 第一步:cd /root || exit 1 第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(若有卡点,进行不下去,可能是服务器网络问题,去拉取时下载不全,可复制网址,手动下载到电脑上,然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。) 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 第六步:执行完成后,刷新一下,重新进入终端,若最左侧出现了(AI)的字符,则恭喜您。 配置环境: 1. 打开刚才保存的“外网面板地址”。 2. 输入账号密码。 3. 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 4. 首次会有个推荐安装,只安装 Nginx 1.22 和 MySQL 5.7 即可,其他的取消勾选。 5. 点击“其他菜单”,出现相应样式,会让您关联,点击【关闭】,直接操作第 4 步【开始部署】。绿色字体的三个步骤可以不做。(这里的步骤,用不到,可以不关联)若想关联,可以点击【点击查看】按钮,跳转进入腾讯云。 6. 点击“API 密匙关联”点击“新建秘钥”。复制这两个,一定保存好。 7. 点击确定后,列表上会有一个 APPID,这三个串码,依次对应粘贴到刚才的登录窗口里即可。
2025-02-18
我想学会使用ai,该学习哪些方面的知识
如果您想学会使用 AI ,以下是一些您需要学习的方面: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 学习路径偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 学习路径偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-27
金融业在哪些方面是不能被AI所代替的
在金融业中,以下方面不太容易被 AI 所替代: 1. 战略决策:CFO 及其直接报告人应专注于金字塔顶端的战略决策,这需要综合的判断力、对宏观环境的深刻理解和长期的经验积累,AI 难以完全胜任。 2. 复杂的情感决策:金融服务被认为是情感购买,决策树复杂且难以自动化,需要人类根据客户的个人情况提供个性化的建议。 3. 合规与法律处理:金融服务高度受监管,复杂且非结构化的法律合规要求人类员工的参与和判断,以确保符合规定。 尽管 AI 在金融领域的预测、报告、会计和税务、采购和应付账款等方面能够提供帮助和实现自动化,但上述几个方面仍依赖人类的专业能力和经验。
2024-12-18
ai从哪些方面不能替代人类
AI 在以下方面不能替代人类: 1. 人际交往方面:AI 无法像人类一样建立团队、跨越文化界限进行深入且自然的交流,也难以激发团队的创造力和凝聚力。 2. 团队领导方面:领导团队需要理解和处理复杂的人际关系、激励和引导成员等,这些是 AI 难以做到的。 3. 复杂决策制定方面:在面对涉及众多不确定因素、伦理道德和情感因素的复杂情况时,人类的综合判断和决策能力更为出色。 4. 创新能力方面:人类具有独特的创新思维和灵感,能够创造出全新的理念、方法和作品。 总之,虽然 AI 在某些任务上表现出色,但在需要人际交往、团队领导、复杂决策制定和创新等方面,人类仍具有不可替代的优势。
2024-12-11
图像识别能力能用在哪些方面?
图像识别能力可以应用在以下方面: 1. 自动驾驶:帮助车辆识别道路、交通标志和其他物体。 2. 广告定向投放:根据图像内容精准推送相关广告。 3. 网页搜索结果优化:通过识别图像内容提高搜索结果的准确性。 4. 数字助手:如 Google Now 或 Amazon Alexa 中用于识别图像相关的指令。 5. 安防监控:识别异常行为或人物。 6. 医疗诊断:辅助医生识别医学影像中的病症。 7. 工业检测:检测产品的质量和缺陷。 8. 物流:识别货物的类别和状态。
2024-12-05
生成式ai现在有哪些方面的应用
生成式 AI 具有广泛的应用场景,包括但不限于以下方面: 创作领域:如写作文、创建漫画、编辑电影等。 内容生成:例如生成文章、报告、诗歌等文本,绘画、设计图、合成照片等图像,音乐、语音、环境声音等音频,电影剪辑、教程、仿真等视频。 工作辅助:包括文档摘要、信息提取、代码生成、营销活动创建、虚拟协助(如智能聊天机器人、虚拟客服)、呼叫中心机器人等。 游戏领域:可以生成原始的新内容,如动画、音效、音乐,甚至创造具有完整性格的虚拟角色。
2024-11-29
我可以将AI用在日常市场营销工作中的哪些方面呢
在日常市场营销工作中,您可以将 AI 应用于以下方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:利用 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:使用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:利用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:利用 AI 帮助在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:借助 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,对于中小企业,还可以通过以下方式利用 AI 提升市场营销效果: 1. 营销自动化: 实施基于 AI 的营销自动化工具,提高营销活动的效率和一致性,减少人工工作量。选择满足企业特定需求的工具,如自动化电子邮件平台、社交媒体管理工具等,并根据目标市场和营销目标进行设置和配置。 将客户数据源(如 CRM 系统)与营销自动化工具集成,实现更个性化和针对性的营销。 通过 AI 分析结果调整和优化营销内容,确保相关性和有效性,提高营销活动的 ROI。持续监控营销活动的各项指标,定期更新营销自动化策略。 2. 目标市场分析: 使用 AI 工具进行市场细分,收集广泛的市场数据,包括消费者行为、购买历史、社交媒体互动等,基于分析结果将市场细分为不同的客户群体。 基于 AI 分析结果定制化营销策略,针对每个细分市场群体制定特定的策略,如定制化的广告内容、促销活动和沟通方式。持续监测营销活动的效果,定期更新市场数据,不断优化和调整营销策略。
2024-10-30
临床医疗deepseek使用手册
以下是关于 DeepSeek 在临床医疗方面的使用手册: 使用案例: 借助 AI 分析好的文章: 找出最喜欢的文章,投喂给 deepseek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 根据文章内容对作者心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 提升 DeepSeek 能力的方法: 用 Coze 做效果对比测试。 使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向。 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源。 Claude 3.5 Sonnet:最得力的助手。
2025-02-13
我是名临床医生,请告诉我有哪些临床医生可以应用的医学AI软件
以下是一些临床医生可以应用的医学 AI 软件: 中医应用:将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 生成药方,目前用于辅助看诊,提高诊疗效率,愿景是未来实现 24 小时独立问诊开药。 农业:鉴别香蕉树的疾病,对近 2 万张各种香蕉植物的图片进行 AI 训练,农民们可以使用应用程序 Tumaini 拍照并得到诊断结果。 DoctorGPT:不仅是一个 AI 模型,还集成了医学专家的知识,能够准确回答各种医学问题。
2024-09-13
AI在临床护理中的应用
AI 在临床护理中的应用主要包括以下几个方面: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 文档工作:医生可将文档工作交给 AI 书记员。 6. 分诊工作:初级医疗服务提供者能依赖聊天机器人进行分诊。 此外,未来还可能会有更多的应用,如为患者提供个性化的护理建议等。但需要注意的是,尽管 AI 在医疗保健领域展现出了巨大潜力,但仍存在一些不足,为了真正实现变革,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。
2024-08-17
医生的ai工具
以下是一些适用于医生的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。 2. Scholarcy:一款科研神器,主要是为做科研、学术、写论文的人准备的。可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 此外,在健康和心理咨询方面,还有以下 AI 工具: 1. MindGuide:任务为 Mental health therapy,案例为 Tailored mental health counseling companion。 2. Lotus:任务为 Therapy,案例为 Online cognitive behavior therapy specialist。 3. MindMateGPT:任务为 Therapy,案例为 Personalized mental health guidance&coping tactics。 4. Noworry AI psychologist:任务为 Therapy,案例为 Audio therapies for stress and mental wellbeing。 5. Thoughtcoach:任务为 Therapy,案例为 Negative thoughts reframed。 请注意,内容由 AI 大模型生成,请仔细甄别。您可以根据自己的具体需求选择合适的工具进行尝试。
2025-01-08
如何打造医生的个人AI工具或者助理
以下是为您提供的关于打造医生个人 AI 工具或助理的一些参考: 在医疗保健领域之外,已经有许多为协助特定任务而设计的 AI 驱动工具和教练出现,比如 InterAlia 能帮助搭配服装,Prodigy AI 能提供职业建议,Poised 能提升沟通能力。未来每个人拥有理解自身生活独特背景的个性化聊天机器人并非不可能。 Sam Altman 认为,AI 模型将很快作为自主的个人助理为我们执行特定任务,例如代表您协调医疗护理。并且随着深度学习的发展,AI 会不断进步,为人们的生活带来改善。 对于教师而言,有多种专用工具推荐,如学生小组里的助教智慧学伴、月之暗面的 Kimi.ai 等。在教育应用中,存在生成式人工智能教育应用的五种境界,包括知道、学习并使用、用好提示语、定制智能体、融合驾驭等。同时,还有一些原则需要遵循,如始终邀请人工智能入席、让人始终在环路之中、像对待人一样对待人工智能并明确其类型、假设这是用过的最差的人工智能等。在人工智能时代,教学呈现出人类与人工智能/机器人联合教学成为常态、人类教师生产力等因人工智能增强、语言障碍消失、学习回归本真、学习者主动学习等重要性凸显等走向。 综合以上信息,打造医生的个人 AI 工具或助理可以参考以下思路: 1. 明确医生的具体需求和任务,例如诊断辅助、病历管理、患者沟通等。 2. 选择适合医疗场景的技术和算法,确保准确性和安全性。 3. 设计友好的用户界面,方便医生操作和交互。 4. 进行大量的医疗数据训练,以提高工具的性能和准确性。 5. 遵循相关的法律法规和伦理准则,保障患者隐私和医疗安全。
2025-01-08
医生的ai助理
以下是关于医生的 AI 助理的相关信息: 为了在医疗保健领域产生真正的变革,AI 应像优秀的医生和药物开发者那样学习。成为顶尖医疗人才通常从多年的密集信息输入和实践开始,通过正规教育和学徒实践,获取难以在教科书中明确的知识,培养在复杂情况下确定最佳答案的直觉。对于 AI 来说,当前的学习方式及技术人员的处理方式存在问题,应通过堆叠模型训练,如先训练生物学、化学模型,再添加特定医疗数据点。 AI 智能体方面,如字节的扣子,是新一代一站式 AI Bot 开发平台,无论有无编程基础都能构建各类问答 Bot,完成从简单问答到复杂逻辑对话,开发完成后可发布到社交平台和通讯软件。创建智能体可通过简单 3 步:起名称、写介绍、用 AI 创建头像。 在医疗领域,2024 年 4 月浙江卫健委联合支付宝推出“AI 就医助理”,功能包括诊前的智能导诊、一键挂号,诊中的在线取号、排队叫号、线上缴费、AR 导航等,诊后的健康问答、指标解读、健康档案等,通过数字人的“主动服务”串联就医流程,虽从 ROI 角度看解决的痛点不足以让医院和患者付费,但可作为收集医疗数据的重要途径,实现医院、患者、企业三赢。
2025-01-08
有什么可以医生工作使用的AI吗
以下是一些可用于医生工作的 AI 应用: 1. 在医疗健康生物制药的研究方面,ChatGPT、Google Bard 等技术极大地加速了相关研究,AI 在抗癌、抗衰老、早期疾病防治等的研究应用中起着重要作用。例如,AI 能够提前三年诊断胰腺癌;两名高中生与医疗技术公司合作,利用 AI 发现了与胶质母细胞瘤相关的新靶基因;AI 还能帮助抗衰老,筛查出高效的药物候选物;在寻找阿尔兹海默症和早期诊断帕金森病的治疗方法上,AI 也发挥了作用。 2. 为了在医疗保健中产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。医生将把文档工作交给 AI 书记员,初级医疗服务提供者将依赖聊天机器人进行分诊,AI 还能加速药物开发。 3. 具体应用场景包括: 医学影像分析:用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新疗法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。
2024-10-22
AI可以通过扫描我从而精准的判断出我骨头的位置并基于丰富的医疗学识制作出医疗思路,从而使我避免人工的失误且人类医生的刻意为难
目前的 AI 技术在医疗领域虽然取得了显著的进展,但还无法仅仅通过扫描您就精准判断出骨头的位置,并基于丰富的医疗学识直接制作出完整的医疗思路。AI 在医疗中的应用更多是辅助医生进行诊断和治疗决策,例如通过图像识别技术帮助医生更准确地识别病变部位,但最终的诊断和治疗方案仍需要人类医生综合多方面的因素进行判断和制定。而且,大多数人类医生都是秉持着职业道德和专业精神为患者服务的,不存在刻意为难的情况。
2024-08-26