Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

临床医生哪些方面可以用的到ai

Answer

临床医生在以下方面可以用到 AI:

  1. 医学影像分析:AI 可用于辅助分析 X 射线、CT 扫描和 MRI 等医学图像,以辅助诊断疾病。
  2. 药物研发:加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。
  3. 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。
  4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。
  5. 医疗保健交付和后勤功能:例如文档工作可交给 AI 书记员。
  6. 初级医疗服务中的分诊:依赖聊天机器人进行分诊。
Content generated by AI large model, please carefully verify (powered by aily)

References

新工业革命:生物技术×人工智能

我们今天正站在这个转折点上。直到现在,医疗保健和生物技术仍然大量依赖服务——由受过专业培训的科学家和[医生](https://a16z.com/2019/06/13/ai-doctor-deep-medicine-topol/)提供——这些服务是算法无法替代的,更不用说为公司增加足够的价值来采纳它们了。但现在,我们正处于一个革命的起点,[AI正在](https://a16z.com/2019/11/19/ai-industrializing-discovery-biology-healthcare/)工业化生物制药和医疗保健,它被应用于从[药物设计](https://a16z.com/2020/05/26/investing-insitro/)和[诊断](https://a16z.com/2017/03/01/going-deeper-into-freenome/)到[医疗保健交付](https://a16z.com/2021/07/12/investing-in-bayesian-health/)和[后勤功能](https://a16z.com/2021/02/09/administration-healthcare-back-office-innovation/)的各个方面。(关于在生物学中应用AI的讨论经常出现的问题或挑战,我在[此处](https://a16z.com/2018/02/28/black-box-problem-ai-healthcare/)解决了医疗保健中AI的“黑箱”问题;并在[此处](https://a16z.com/2021/06/15/ai-is-too-dumb-for-now-2/)解决了我们获取智能[与“愚蠢”]AI的需求问题。)[heading4]但现在,我们正处于一个革命的起点,AI正在使生物制药和医疗保健产业化,并且它被应用到从药物设计和诊

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

Others are asking
AI客服
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 在中小企业利用人工智能(AI)进行转型方面,“客户服务自动化”是指利用人工智能(AI)技术,尤其是 AI 聊天机器人,来自动化处理客户服务中的常见咨询。具体做法包括: 1. 部署 AI 聊天机器人处理常见的客户咨询:根据企业的特定需求和预算,选择合适的 AI 聊天机器人解决方案,并根据常见的客户咨询类型,定制聊天机器人的回答库,将其集成到企业的网站、社交媒体平台和其他客户服务渠道。 2. 通过机器人提供 24/7 客户支持,提升响应速度和服务质量:提供全天候的客户支持,以改善客户体验和满意度。AI 聊天机器人无需休息,可以提供 24 小时全天候服务,确保客户随时获得所需信息,相比人工客服,机器人可以提供更快的响应速度,减少客户等待时间。 3. 定期监控聊天机器人的性能,如解答准确性、客户满意度,并根据反馈进行优化:分析聊天记录和客户反馈,以识别机器人性能的改进点。随着 AI 技术的发展,定期更新聊天机器人的算法和知识库,以提高其效能和准确性。 通过实施客户服务自动化,中小企业可以显著提高客户服务的效率和质量,同时降低成本。AI 聊天机器人不仅可以处理大量常规咨询,还可以释放人工客服资源,使其专注于更复杂和个性化的客户需求。
2025-01-05
根据小学生试卷答题情况,分析需要加强复习的知识点,用什么AI工具
以下是一些可用于根据小学生试卷答题情况分析需要加强复习知识点的 AI 工具及相关建议: 1. ChatGPT:可以帮助分析答题中的语言表达、逻辑推理等方面的问题,从而确定语文、数学等学科中需要加强的知识点。 2. 国内模型如豆包:能提供一定的分析和指导。 3. 通义:对于英语等学科的答题情况分析有帮助,例如语法、词汇等方面的问题。 在使用这些 AI 工具时,您可以将试卷内容输入给工具,并要求其分析答题中的错误和不足之处,从而找出需要加强复习的知识点。但需要注意的是,不能完全依赖 AI 的分析结果,还需要结合教师的专业判断和教学经验。
2025-01-05
与AI沟通的提示词技巧
以下是关于与 AI 沟通的提示词技巧的总结: 1. 输入是写好提示词的根本:输入包括读书、交流、旅游等各种与世界的交互,要善于抓住有价值的输入并思考。 2. 清晰表达提示词可借助框架:由于无法直接将脑海中的东西完整传达给大模型,所以需要借助预置多个角度的框架来描述。 3. 文科生和学哲学的人写提示词有优势:文科生对文字细微差异敏感,学哲学的人对词的压缩语义和思考深度有优势。 4. 利用框架清晰表达脑海中的想法与大模型交流:将脑海中的事情或方法论通过框架从不同角度描述,能比空想更高效,且框架角度可根据任务调整。 5. 约束大模型按指定角度输出:通过设定角色、目标、风格、规则等,可约束大模型按照约定的视角输出想要的结果。 6. 从 0 到 1 上手的封装方法:当脑海中有清晰的知识方法论,想与大模型对话,需思考如何封装,探讨是否存在通用的核心方法。 7. 提示词写作的三板斧技巧: 分配角色:让大模型以特定身份的行为模式做事,注入的角色信息是超级浓缩的,若角色不明确需解压缩塑造,使其符合大模型的工作机制。 给出示例:当脑海中对要表达的意向模糊时,可通过给出示例辅助描述,将想法概要或详细描述与示例结合,能让大模型输出更好的结果。 8. 在豆瓣模型中自定义提示词的使用技巧: COT 在分析中的作用:让模型一步步思考,拆解逻辑,增加信息量,实现逻辑推理。 学生写提示词的建议:从三个技巧开始从 0 到 1 练习,并辅助学习相关材料。 豆瓣模型的默认功能与自定义:有默认功能,若想定制自己想要的功能,可通过右下角下拉的自定义添加技能,命名并填写提示词。 避免身份冲突的取巧办法:为避免定义身份与系统内在设定冲突,可将身份设定为名人的身边人。 9. 一些具体的 Prompt 技巧: 类比:要求 AI 用类比或示例阐明概念。 引述:要求包含专家的相关引言或陈述。 幽默:表明是否应融入幽默。 轶事:要求包含相关轶事。 隐喻:鼓励使用隐喻使复杂观点更具亲和力。 趣闻:鼓励包含有趣或令人惊讶的事实。 关键词:列出需要包含的重要关键词或短语。 小贴士:鼓励 AI 分享与主题相关的小窍门和技巧。 保密性:说明保密要求或限制。 格式化:指定所需的格式元素。
2025-01-05
好用的免费制作PPT的AI工具
以下是一些好用的免费制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 5. 歌者 PPT:永久免费的智能 PPT 生成工具,支持一键生成 PPT 内容、多种文件格式转 PPT、多语言支持、海量模板和案例库、在线编辑和分享、增值服务等,网址:gezhe.com
2025-01-05
AI的发展历史
AI 的发展历史可以追溯到二十世纪中叶,大致经历了以下几个阶段: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论出现。心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。1956 年,在达特茅斯会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。但由于从专家那里提取知识并以计算机可读形式表现出来的任务复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术发展迅速。当前的前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-01-05
AI最好用的手机APP
以下是一些好用的 AI 手机 APP: 图片和视频内容编辑方面:美图秀秀(https://apps.apple.com/us/app/meituphotoeditoraiart/id416048305)排名第 9 位、SNOW(https://apps.apple.com/us/app/snowaiprofile/id1022267439)排名第 30 位、Adobe Express(https://apps.apple.com/us/app/adobeexpressaiphotovideo/id1051937863)排名第 35 位。 消费者助手方面:ChatGPT 第三次以巨大优势成为网络和移动端排名第一的产品。 人工智能搜索引擎方面:Perplexity(http://perplexity.ai/)目前在网络上排名第三,专注于提供简明、实时和准确的查询答案,并引用来源,还首次进入移动端前 50 名榜单。 办公文档翻译工具:WPS 文档翻译功能,可快速翻译办公文档,提高工作效率。 美容护肤产品推荐平台:美丽修行 APP,根据用户肤质推荐适合的美容护肤产品。 儿童安全监控系统:360 儿童手表,利用 AI 技术实现定位、通话、安全区域设置等功能。 汽车保养提醒系统:汽车之家 APP,根据用户的汽车型号、行驶里程等信息提醒车主进行定期保养。 金融方面:Composer(免费可用),用 AI 构建、回测和执行交易算法。 移动 APP 方面:Hevy 是最佳移动应用程序获奖者,在 App Store 和 Google Play 商店中获得了 4.9 的评分,共有 71,000 条评论。ChatGPT for iOS(免费)是 ChatGPT 的官方 iOS 应用程序。Rainbow AI(免费)是精准降水预报 APP。
2025-01-05
金融业在哪些方面是不能被AI所代替的
在金融业中,以下方面不太容易被 AI 所替代: 1. 战略决策:CFO 及其直接报告人应专注于金字塔顶端的战略决策,这需要综合的判断力、对宏观环境的深刻理解和长期的经验积累,AI 难以完全胜任。 2. 复杂的情感决策:金融服务被认为是情感购买,决策树复杂且难以自动化,需要人类根据客户的个人情况提供个性化的建议。 3. 合规与法律处理:金融服务高度受监管,复杂且非结构化的法律合规要求人类员工的参与和判断,以确保符合规定。 尽管 AI 在金融领域的预测、报告、会计和税务、采购和应付账款等方面能够提供帮助和实现自动化,但上述几个方面仍依赖人类的专业能力和经验。
2024-12-18
ai从哪些方面不能替代人类
AI 在以下方面不能替代人类: 1. 人际交往方面:AI 无法像人类一样建立团队、跨越文化界限进行深入且自然的交流,也难以激发团队的创造力和凝聚力。 2. 团队领导方面:领导团队需要理解和处理复杂的人际关系、激励和引导成员等,这些是 AI 难以做到的。 3. 复杂决策制定方面:在面对涉及众多不确定因素、伦理道德和情感因素的复杂情况时,人类的综合判断和决策能力更为出色。 4. 创新能力方面:人类具有独特的创新思维和灵感,能够创造出全新的理念、方法和作品。 总之,虽然 AI 在某些任务上表现出色,但在需要人际交往、团队领导、复杂决策制定和创新等方面,人类仍具有不可替代的优势。
2024-12-11
图像识别能力能用在哪些方面?
图像识别能力可以应用在以下方面: 1. 自动驾驶:帮助车辆识别道路、交通标志和其他物体。 2. 广告定向投放:根据图像内容精准推送相关广告。 3. 网页搜索结果优化:通过识别图像内容提高搜索结果的准确性。 4. 数字助手:如 Google Now 或 Amazon Alexa 中用于识别图像相关的指令。 5. 安防监控:识别异常行为或人物。 6. 医疗诊断:辅助医生识别医学影像中的病症。 7. 工业检测:检测产品的质量和缺陷。 8. 物流:识别货物的类别和状态。
2024-12-05
生成式ai现在有哪些方面的应用
生成式 AI 具有广泛的应用场景,包括但不限于以下方面: 创作领域:如写作文、创建漫画、编辑电影等。 内容生成:例如生成文章、报告、诗歌等文本,绘画、设计图、合成照片等图像,音乐、语音、环境声音等音频,电影剪辑、教程、仿真等视频。 工作辅助:包括文档摘要、信息提取、代码生成、营销活动创建、虚拟协助(如智能聊天机器人、虚拟客服)、呼叫中心机器人等。 游戏领域:可以生成原始的新内容,如动画、音效、音乐,甚至创造具有完整性格的虚拟角色。
2024-11-29
我可以将AI用在日常市场营销工作中的哪些方面呢
在日常市场营销工作中,您可以将 AI 应用于以下方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:利用 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:使用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:利用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:利用 AI 帮助在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:借助 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,对于中小企业,还可以通过以下方式利用 AI 提升市场营销效果: 1. 营销自动化: 实施基于 AI 的营销自动化工具,提高营销活动的效率和一致性,减少人工工作量。选择满足企业特定需求的工具,如自动化电子邮件平台、社交媒体管理工具等,并根据目标市场和营销目标进行设置和配置。 将客户数据源(如 CRM 系统)与营销自动化工具集成,实现更个性化和针对性的营销。 通过 AI 分析结果调整和优化营销内容,确保相关性和有效性,提高营销活动的 ROI。持续监控营销活动的各项指标,定期更新营销自动化策略。 2. 目标市场分析: 使用 AI 工具进行市场细分,收集广泛的市场数据,包括消费者行为、购买历史、社交媒体互动等,基于分析结果将市场细分为不同的客户群体。 基于 AI 分析结果定制化营销策略,针对每个细分市场群体制定特定的策略,如定制化的广告内容、促销活动和沟通方式。持续监测营销活动的效果,定期更新市场数据,不断优化和调整营销策略。
2024-10-30
AI在未来运用在机器人上有哪些方面
AI 在未来运用在机器人上的方面包括: 1. 制造业:带来制造业的革命,如自适应机器人的应用。 2. 自动驾驶:自动驾驶车辆成为重要应用领域。 3. 人形机器人:在非结构化环境中的应用具有巨大价值。 4. 医疗领域: 护理/手术机器人:逐渐出现由 AI 驱动的机器人,护理等非生命直接相关的机器人会早于手术机器人。 人体健康模型:如“AI 虚拟病人”帮助药品在进入临床之前进行预筛查,未来可能出现模拟人体运转的 AGI 实现“防未病”和“真个性化”诊疗。 5. 农业:应用于田间管理的机器人能提高农业生产效率、可持续性和生产力。 6. 疾病检测与治疗:改善乳腺癌筛查,变革疾病的检测、预防和治疗方式。
2024-09-30
我是名临床医生,请告诉我有哪些临床医生可以应用的医学AI软件
以下是一些临床医生可以应用的医学 AI 软件: 中医应用:将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 生成药方,目前用于辅助看诊,提高诊疗效率,愿景是未来实现 24 小时独立问诊开药。 农业:鉴别香蕉树的疾病,对近 2 万张各种香蕉植物的图片进行 AI 训练,农民们可以使用应用程序 Tumaini 拍照并得到诊断结果。 DoctorGPT:不仅是一个 AI 模型,还集成了医学专家的知识,能够准确回答各种医学问题。
2024-09-13
AI在临床护理中的应用
AI 在临床护理中的应用主要包括以下几个方面: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 文档工作:医生可将文档工作交给 AI 书记员。 6. 分诊工作:初级医疗服务提供者能依赖聊天机器人进行分诊。 此外,未来还可能会有更多的应用,如为患者提供个性化的护理建议等。但需要注意的是,尽管 AI 在医疗保健领域展现出了巨大潜力,但仍存在一些不足,为了真正实现变革,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。
2024-08-17
有什么可以医生工作使用的AI吗
以下是一些可用于医生工作的 AI 应用: 1. 在医疗健康生物制药的研究方面,ChatGPT、Google Bard 等技术极大地加速了相关研究,AI 在抗癌、抗衰老、早期疾病防治等的研究应用中起着重要作用。例如,AI 能够提前三年诊断胰腺癌;两名高中生与医疗技术公司合作,利用 AI 发现了与胶质母细胞瘤相关的新靶基因;AI 还能帮助抗衰老,筛查出高效的药物候选物;在寻找阿尔兹海默症和早期诊断帕金森病的治疗方法上,AI 也发挥了作用。 2. 为了在医疗保健中产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。医生将把文档工作交给 AI 书记员,初级医疗服务提供者将依赖聊天机器人进行分诊,AI 还能加速药物开发。 3. 具体应用场景包括: 医学影像分析:用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新疗法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。
2024-10-22
AI可以通过扫描我从而精准的判断出我骨头的位置并基于丰富的医疗学识制作出医疗思路,从而使我避免人工的失误且人类医生的刻意为难
目前的 AI 技术在医疗领域虽然取得了显著的进展,但还无法仅仅通过扫描您就精准判断出骨头的位置,并基于丰富的医疗学识直接制作出完整的医疗思路。AI 在医疗中的应用更多是辅助医生进行诊断和治疗决策,例如通过图像识别技术帮助医生更准确地识别病变部位,但最终的诊断和治疗方案仍需要人类医生综合多方面的因素进行判断和制定。而且,大多数人类医生都是秉持着职业道德和专业精神为患者服务的,不存在刻意为难的情况。
2024-08-26
医生相关ai
以下是关于医生相关 AI 的一些信息: 在医疗保健领域,AI 有以下应用场景: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 具有讽刺意味的是,创建专门从事医疗保健等特定领域的 AI 可能比创建具有跨领域典型人类水平知识的全能 AI 更容易。我们更需要特定领域的专家 AI,预计会创造许多专家 AI,它们在编码、数据和测试方面采用多样化的方法,以便在需要时提供多个意见。 同时,我们必须将 AI 从其在线基础上摘下,并让最熟练的人类专家配备可穿戴设备,收集微妙的现实世界互动供其学习。 就像预医学生需要从化学和生物学基础课程学起一样,开发具有潜在空间层次结构的堆叠 AI 模型,将反映对每个基本元素的理解或预测能力。这可能最初会平行于人类教育和教育范例,但随着时间推移可能会专门发展,以在 AI 学习中培养新型的专业知识。AI 可能会拥有针对特定任务专门设计的神经架构,如生物皮层和药物设计皮层。
2024-08-12
我是医生,如何用ai提高我出医疗建议的效率
作为医生,使用AI可以显著提高你出医疗建议的效率。以下是一些方法: 1. 智能病历分析:使用自然语言处理(NLP)技术,AI可以自动分析患者的病历、检验报告和历史记录,并提取出关键信息。这不仅可以帮助你快速了解患者的病情,还可以为你提供初步的诊断建议。 2. 个性化治疗方案生成:AI可以根据患者的个人数据(如年龄、病史、过敏史等)和最新的医学指南,帮助生成个性化的治疗方案。这样你可以更快地为患者制定出合适的治疗计划。 3. 症状检查工具:使用基于AI的症状检查工具,患者可以在就诊前输入他们的症状,系统可以提供初步的病情分析和建议。这可以帮助你在就诊时更快速地做出诊断。 4. 医学文献推荐:AI可以帮助你快速查找和推荐最新的医学文献,确保你能够随时获取最新的治疗方法和研究成果。这对于处理复杂病例尤为有用。 5. 患者沟通助手:AI可以帮助你与患者进行高效沟通,回答常见问题,提供健康教育内容,甚至安排后续随访。这样可以节省你的时间,让你集中精力处理更复杂的病例。 6. 预测模型:使用AI建立预测模型,可以帮助你预测患者的病情进展,评估治疗效果,甚至识别高危患者,从而提前采取干预措施。 这些工具和方法可以显著提高你出医疗建议的效率,减少重复性工作,并为你腾出更多时间专注于复杂的病例和决策。
2024-08-03
如何询问医生相关话术
当询问医生相关话术时,需要注意以下几点: 医生在使用 ChatGPT 寻找更富同理心的措辞时,往往只向少数同事透露。 医生决定是否愿意将任务交给 ChatGPT 的唯一方法是自己提问一些问题。 对于证言人的限制性要求包括:说话人所科普的范围不能超过其执业范围,如消化内科医生不得回答高血压的内容。 内容选题方向要求没有科学性问题,并通过文献资料或相关领域专家的证言来说明。 在与医生交流时,要注意以下提问模板: 自我介绍并表明是助教,专门帮老师规划课程。 询问老师的授课对象和具体科目。 请老师提供教学大纲(如果有现成的),并说明具体需要帮忙规划哪几节课。 如果没有大纲,让老师描述一下课程安排,内容越详细越好。 获取信息后要停下来,等候答复。
2024-07-15