直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

模型敏感词管控

回答

在模型敏感词管控方面,对于 RAG 提示工程,我们对 Example 模块进行了重要调整。原先像“清朝末年有哪些政治事件?”这样的示例内容可能会无意引导模型触及政治敏感话题,违背初衷。为此,重新设计了示例内容,既能为模型提供清晰工作指导,又避免引发敏感议题讨论,同时进一步修改了示例流程,确保模型更理解自身任务。以下是进一步修正的提示词。接下来继续运行并查看结果。从表现看,成功控制住 GPT 模型讨论敏感话题的问题,但可能存在漏洞及提示词被攻击、诱骗的情况,这些留待后续解决。目前面对常规请求问题,GPT 模型应不会“东扯西扯”。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

19. RAG 提示工程系列(一)

最终,我们对Example模块进行了重要的调整。原先的示例内容如“清朝末年有哪些政治事件?”可能会无意中引导模型触及政治敏感话题,这与我们的初衷相悖。为了避免这种情况,我们重新设计了示例内容,确保它们既能为模型提供清晰的工作指导,又不会引发对敏感议题的讨论。与此同时,我们也进一步修改了示例流程,以确保模型能够更加理解自己需要怎么做。以下是进一步修正的提示词:接下来让我们继续运行,查看结果:根据表现来看,我们成功控制住GPT模型讨论敏感话题的问题了。可能会有漏洞,也可能存在提示词被攻击、诱骗的情况,这些问题我们放到part2中慢慢解决。不过就目前来看,面对常规请求问题,GPT模型应该是不会跟你”东扯西扯“了。

RAG提示工程(一):基础概念

最终,我们对Example模块进行了重要的调整。原先的示例内容如“清朝末年有哪些政治事件?”可能会无意中引导模型触及政治敏感话题,这与我们的初衷相悖。为了避免这种情况,我们重新设计了示例内容,确保它们既能为模型提供清晰的工作指导,又不会引发对敏感议题的讨论。与此同时,我们也进一步修改了示例流程,以确保模型能够更加理解自己需要怎么做。以下是进一步修正的提示词:接下来让我们继续运行,查看结果:根据表现来看,我们成功控制住GPT模型讨论敏感话题的问题了。可能会有漏洞,也可能存在提示词被攻击、诱骗的情况,这些问题我们放到part2中慢慢解决。不过就目前来看,面对常规请求问题,GPT模型应该是不会跟你”东扯西扯“了。

教程:18_霜降

模型:majicmixRealistic_v6生成的尺寸和你的草稿图保持一致关键词和ControlNet参数都不一样都进行了调整,这里以第一张为例正关键词:(masterpiece,highres,high quality,high resolution),autumn,(frost flower:1.1),(the golden leaves are covered with frost flowers:1.2),the sky,high definition blurry background,clean and simple background,frosty grass,clean and simple background,8k,High detail,(detailed light:0.8),Ambient light,3d rendering,<lora:极光V1:0.4>,<lora:LORA_xueliang_guohuashanshui:0.6> guohuashanshui负关键词:NSFW,Negative,(worst quality:2),(low quality:2),(normal quality:2),watermark,ng_deepnegative_v1_75t,character,people,可以发中文的关键词:(杰作,高分辨率,高画质,高分辨率),秋天,(霜花:1.1),(金色的叶子上挂满了霜花:1.2),天空,高清模糊背景,干净简单的背景,霜花,干净简洁的背景,8k,高细节,(细节光:0.8),环境光,3D渲染,

其他人在问
ai落地场景:输入敏感词管控,脱敏怎么返回处理
很抱歉,目前知识库中没有关于输入敏感词管控及脱敏返回处理的相关内容。但一般来说,对于输入敏感词的管控和脱敏处理,常见的方法包括: 1. 建立敏感词库:事先整理出常见的敏感词列表。 2. 文本检测:在输入时对文本进行实时检测,判断是否包含敏感词。 3. 脱敏处理方式:可以采用替换、隐藏部分字符、加密等方法对敏感词进行处理。 4. 设置规则和策略:例如根据不同的场景和用户级别,确定不同的处理方式。 由于缺乏具体的详细信息和场景,以上只是一些常见的思路和方法,您可以根据实际情况进一步深入研究和设计具体的解决方案。
2024-09-10
输入询问ai模型敏感词管控
以下是关于 AI 模型敏感词管控的相关信息: 在给予 GPT 足够的时间进行“思考”的最佳实践中,通过测试数据发现,由于输入内容超过一定 token 会导致模型遗忘。因此,在输入大量文本或大量对话后,让模型进行自我检查的提示词习惯,有助于收获更准确的答案。 在应对提示词攻击的输入侧防护方面,可采用基于模型进行分类过滤的方法。这是“基于提示词过滤”的进阶版,能使用像 BERT 这样的小型文本分类模型或像 ChatGPT 这样的大型语言模型,自动分析和分类输入内容。其好处是无需提前知晓大量信息,就能灵活应对复杂场景和不同需求。通过学习和训练大量已知的安全威胁样本,建立分类模型来检测和过滤输入中的有害内容,这是很多大型语言模型服务如 OpenAI 的 ChatGPT、谷歌的 Bard、微软的 NewBing 等采用的主流防御策略,它们会检测用户输入内容,与核心大型语言模型协同工作,防止有害和敏感信息输入,确保输出内容合规。
2024-09-10
如何搭建 chatbox 敏感词库
很抱歉,目前知识库中没有关于如何搭建 chatbox 敏感词库的相关内容。但一般来说,搭建 chatbox 敏感词库可以考虑以下步骤: 1. 明确敏感词的范畴和类型,例如涉及政治、色情、暴力、辱骂等方面的词汇。 2. 收集相关的敏感词汇,可以通过参考行业标准、法律法规、用户反馈以及其他类似平台的经验。 3. 对收集到的敏感词进行分类和整理,以便于管理和更新。 4. 利用合适的技术和工具,将敏感词库集成到 chatbox 的系统中,实现实时检测和处理。 5. 定期更新和维护敏感词库,以适应不断变化的语言环境和用户需求。 以上是一个大致的搭建思路,具体的实施还需要根据您的实际情况和技术条件进行调整和优化。
2024-12-03
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
企业级别ai模型使用敏感词场景设计
很抱歉,目前知识库中没有关于企业级别 AI 模型使用敏感词场景设计的相关内容。但一般来说,在进行企业级别 AI 模型使用敏感词场景设计时,需要考虑以下几个方面: 1. 明确敏感词的定义和范围:根据企业的业务特点、法律法规要求以及道德规范,确定哪些词汇被视为敏感词。 2. 数据采集和预处理:在收集数据用于训练模型时,对包含敏感词的数据进行特殊处理或标记。 3. 模型训练中的考虑:调整模型的参数和算法,以降低对敏感词的过度依赖或错误理解。 4. 实时监测和更新:随着业务和社会环境的变化,及时更新敏感词列表,并对模型进行相应的调整和优化。 5. 人工审核与干预:对于模型输出中涉及敏感词的内容,设置人工审核环节,确保准确性和合规性。 希望以上思路能对您有所帮助,如果您需要更详细准确的设计方案,建议咨询专业的 AI 技术团队或相关专家。
2024-09-10
我想保持对于AI信息的敏感度,你怎么建议
以下是一些保持对 AI 信息敏感度的建议: 1. 关注相关政策和法规的发布与更新,例如了解英国的 AI 监管政策以及拜登签署的 AI 行政命令等,掌握其对 AI 发展的影响和规范。 2. 重视 AI 风险评估,包括考虑未充分利用 AI 能力可能带来的机会成本,以及在不同场景如安全关键操作、重工业、个人医疗保健中的应用风险。 3. 关注 AI 系统的安全性、稳健性和隐私保护,例如研究和采用加密工具等隐私保护技术,评估机构收集和使用商业信息的方式,制定隐私保护技术的有效性评估指南。 4. 注重 AI 治理中的透明度和可解释性,了解相关原则和定义,确保监管者能获取足够信息以落实其他原则。 5. 关注 AI 在公平和民权方面的影响,防止其在司法、医疗和住房等领域导致或加深歧视、偏见等问题,遵循相关指导和采取行动。 6. 参与相关的交流和讨论活动,与监管机构、AI 生命周期参与者等进行沟通,了解最新动态和发展方向。
2024-09-04
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20