Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

输入询问ai模型敏感词管控

Answer

以下是关于 AI 模型敏感词管控的相关信息:

  • 在给予 GPT 足够的时间进行“思考”的最佳实践中,通过测试数据发现,由于输入内容超过一定 token 会导致模型遗忘。因此,在输入大量文本或大量对话后,让模型进行自我检查的提示词习惯,有助于收获更准确的答案。
  • 在应对提示词攻击的输入侧防护方面,可采用基于模型进行分类过滤的方法。这是“基于提示词过滤”的进阶版,能使用像 BERT 这样的小型文本分类模型或像 ChatGPT 这样的大型语言模型,自动分析和分类输入内容。其好处是无需提前知晓大量信息,就能灵活应对复杂场景和不同需求。通过学习和训练大量已知的安全威胁样本,建立分类模型来检测和过滤输入中的有害内容,这是很多大型语言模型服务如 OpenAI 的 ChatGPT、谷歌的 Bard、微软的 NewBing 等采用的主流防御策略,它们会检测用户输入内容,与核心大型语言模型协同工作,防止有害和敏感信息输入,确保输出内容合规。
Content generated by AI large model, please carefully verify (powered by aily)

References

熊猫Jay:万字解读ChatGPT提示词最佳实践

通过上述的测试数据,我们可以发现,的确模型存在这种遗忘的现象,那是因为我们输入的内容超过了一定的token,导致模型存在了一些遗忘(在介绍token时,我有简单说明),这里请模型再次检查,让模型帮我们重新整理了数据。因此,请AI再次自我检查的提示词习惯,最好是在输入大量文本后,或者在大量对话后,让模型进行自己检查,可以帮助我们收获更加准确的答案哦。

RAG提示工程(二):安全与防护实践

这种属于“基于提示词过滤”的进阶版了,我们可以用像BERT这样的小型文本分类模型,或者像ChatGPT这样的大型语言模型,来自动分析和分类输入的内容。这样做的好处是,我们不需要提前知道很多信息,就能灵活地应对各种复杂的场景和不同的需求(模型的泛化能力)。在输入方面,通过学习和训练大量已知的安全威胁样本,我们可以建立一个分类模型来检测和过滤掉输入中的有害内容。这是现在很多大型语言模型服务采用的主流防御策略。像OpenAI的ChatGPT、谷歌的Bard、微软的NewBing等模型产品,都用了这种策略。它们会检测用户输入的内容,和核心的大型语言模型一起工作,防止有害和敏感信息的输入,确保输出的内容是合规的。

20.RAG提示工程系列(二):大模型安全与防护实践

这种属于“基于提示词过滤”的进阶版了,我们可以用像BERT这样的小型文本分类模型,或者像ChatGPT这样的大型语言模型,来自动分析和分类输入的内容。这样做的好处是,我们不需要提前知道很多信息,就能灵活地应对各种复杂的场景和不同的需求(模型的泛化能力)。在输入方面,通过学习和训练大量已知的安全威胁样本,我们可以建立一个分类模型来检测和过滤掉输入中的有害内容。这是现在很多大型语言模型服务采用的主流防御策略。像OpenAI的ChatGPT、谷歌的Bard、微软的NewBing等模型产品,都用了这种策略。它们会检测用户输入的内容,和核心的大型语言模型一起工作,防止有害和敏感信息的输入,确保输出的内容是合规的。

Others are asking
免费生成logo的智能ai网站
以下是一些免费生成 logo 的智能 AI 网站: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 另外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。
2025-01-31
生成logo的智能ai
以下是一些可以生成 logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 此外,还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 藏师傅教您用 AI 三步制作任意公司的周边图片,流程如下: 1. 获取 Logo 图片的描述。 2. 根据 Logo 图片的描述和生成意图生成图片提示词。 3. 将图片和提示词输入 Comfyui 工作生成。 即梦 AI 智能画布制作 Logo 的步骤: 1. 在即梦左侧点击「智能画布」,「上传图片」上传一张 logo 图,点击「图生图」输入描述词,参考程度为 55,选择「轮廓边缘」,点击立即生成。 2. 右侧图层可看到 4 张图,选择喜欢的图;若不喜欢,可用局部重绘、消除笔等功能调整,也可重新生成。
2025-01-31
好用的翻译ai
以下是一些好用的翻译 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 如果您想利用 AI 学习一门外语,可以参考以下方式: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助您提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。
2025-01-31
好用的手机翻译ai
以下为您推荐一些好用的手机翻译 AI 应用: 1. Hand Talk:能自动将文本或语音转换成美国手语。被联合国评为“世界上最佳的社交应用”,已翻译近 20 亿个单词。既是翻译工具,也是学习平台。相关链接:https://xiaohu.ai/p/5688 、https://x.com/imxiaohu/status/1777201503142601143
2025-01-31
零基础如何系统学习ai
对于零基础学习 AI,以下是一个系统的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的经验,比如系统性的学习,不要碎片化的输入,一开始就去系统的看几本书,听几门好课。可以加入像这样的社区,按照新手指引入门。
2025-01-31
零基础如何系统学习ai?
对于零基础学习 AI,以下是一个系统的学习路径: 1. 了解 AI 基本概念: 阅读「」,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作作品。 知识库中有很多实践后的作品和文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用的第一手体验。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的经验: 系统性学习,打好基础,避免碎片化输入,通过看书听课进社区来学习。 加入 AI 社区,如,参考新手指引入门。
2025-01-31
ai落地场景:输入敏感词管控,脱敏怎么返回处理
很抱歉,目前知识库中没有关于输入敏感词管控及脱敏返回处理的相关内容。但一般来说,对于输入敏感词的管控和脱敏处理,常见的方法包括: 1. 建立敏感词库:事先整理出常见的敏感词列表。 2. 文本检测:在输入时对文本进行实时检测,判断是否包含敏感词。 3. 脱敏处理方式:可以采用替换、隐藏部分字符、加密等方法对敏感词进行处理。 4. 设置规则和策略:例如根据不同的场景和用户级别,确定不同的处理方式。 由于缺乏具体的详细信息和场景,以上只是一些常见的思路和方法,您可以根据实际情况进一步深入研究和设计具体的解决方案。
2024-09-10
模型敏感词管控
在模型敏感词管控方面,对于 RAG 提示工程,我们对 Example 模块进行了重要调整。原先像“清朝末年有哪些政治事件?”这样的示例内容可能会无意引导模型触及政治敏感话题,违背初衷。为此,重新设计了示例内容,既能为模型提供清晰工作指导,又避免引发敏感议题讨论,同时进一步修改了示例流程,确保模型更理解自身任务。以下是进一步修正的提示词。接下来继续运行并查看结果。从表现看,成功控制住 GPT 模型讨论敏感话题的问题,但可能存在漏洞及提示词被攻击、诱骗的情况,这些留待后续解决。目前面对常规请求问题,GPT 模型应不会“东扯西扯”。
2024-09-10
如果让提示词变成模板, 每次输入需要的参数就好。
要将提示词变成模板,每次输入需要的参数即可。以下是一些相关的方法和要点: 在 Stable Diffusion 中,下次作图时先选择模板,点击倒数第二个按钮可快速输入标准提示词。描述逻辑通常包括人物及主体特征(如服饰、发型发色、五官、表情、动作)、场景特征(室内室外、大场景、小细节)、环境光照(白天黑夜、特定时段、光、天空)、画幅视角(距离、人物比例、观察视角、镜头类型)、画质(高画质、高分辨率)、画风(插画、二次元、写实)等,通过这些详细提示词能更精确控制绘图。新手可借助功能型辅助网站书写提示词,如 http://www.atoolbox.net/ (通过选项卡快速填写关键词信息)、https://ai.dawnmark.cn/ (每种参数有缩略图参考),还可去 C 站(https://civitai.com/)抄作业,复制每张图的详细参数粘贴到正向提示词栏,注意图像作者使用的大模型和 LORA,也可选取部分好的描述词使用。 简单的提示词模板最终目标是把需求说清楚,如 GPTs 提示词模板:Act like a 输入最终结果),并给出了示例。 提示词母体系列(2)中,在掌握人物设计整体框架后编写提示词,可借鉴替换方式替换模板。模板构成包括:先看约束部分,规则放顶部加强约束,底部也有相应约束,整个约束包裹具体提示词以提示模型专注性;模板结构有基本信息(姓名、性别、年龄、职业)、外貌特征、背景和经历、性格和价值观、爱好特长和语言风格、人际关系和社交活动、未来规划和目标。
2025-01-28
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
如何再coze中引导用户输入内容
在 Coze 中引导用户输入内容可以参考以下步骤: 1. 设计一个吐槽心灵鸡汤的应用,允许用户输入心灵鸡汤类内容,AI 生成对应的反心灵鸡汤,并展示在前端页面。应用体验地址为:https://www.coze.cn/s/iDGHwn8t/ 核心操作流程: 用户在页面输入指定文本。 用户在页面点击【开喝】按钮。 Coze 后台调用工作流生成对应内容。 工作流生成的内容展示在前端界面内。 核心前端设计: 用户界面提供一个元素 A(Coze 中称作组件),让用户输入内容。 用户界面提供一个按钮 A,让用户点击后调用工作流。 用户界面提供一个元素 B,向用户展示工作流的结果。 核心业务逻辑: 读取元素 A 的用户输入。 将用户输入传递给 AI 大模型。 AI 大模型按照提示词设定生成指定内容。 在元素 B 展示 AI 大模型生成的内容。基于上述业务逻辑,只需要设计一个简单的工作流即可。该工作流由【开始】节点(用户输入)、【大模型】节点(AI 生成内容)、【结束】节点构成(内容输出)。 2. 搭建选择内容推荐流,用于根据用户输入的“想看 xxx 内容”,在稍后读存储地址(飞书多维表格)中,检索现有的收藏记录,匹配符合阅读兴趣的内容记录。 新建工作流「recommendRead」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 4.1 开始节点:收到用户输入的“想看 xxx 内容”这类指令就开始流程,不需要额外配置(至于如何判断哪些用户输入是在交代想阅读的内容主题,交由外层 bot 的大模型判断)。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点。 4.3 插件节点:添加「飞书多维表格search_records」插件,只需要设置{{app_token}}参数,在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可以通过额外的配置定向检索状态为“仅记录(即未读状态)”的收藏记录。 4.4 大模型节点:为了处理的稳定性,这一步采用批处理,对检索出来的收藏记录逐个进行相关性匹配。可以继续优化提示词以提升匹配的精准度。
2025-01-09
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
可否输入一次同时使用多个人工智能
360 于 8 月 1 日发布了集合国内 16 家主流模型的 AI 助手。用户可以通过其桌面客户端和浏览器等多个入口随时唤起,支持在同一问题上同时使用多个模型进行解答。当用户不确定选择哪个模型时,AI 助手会通过意图识别自动选择模型。您可以体验一下:https://bot.360.com
2025-01-05
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
如何限制AI Chat回答非法话题,敏感词过滤
以下是关于限制 AI Chat 回答非法话题和进行敏感词过滤的相关内容: 首先,以 ChatGPT 为例,其系统提示词会详细描述身份、角色、时间、记忆功能、DALLE 绘图功能、限制、调用方式、上网和浏览网页功能以及 function calling 和 python 代码等功能。 存在提示词越狱的情况,常见方式包括角色扮演、情境模拟、任务伪装、模式重构等,由此诞生了如 DAN 模式、越狱提示词、邪恶机器人以及 ChatGPT 的开发者模式等经典提示词。例如 DAN 模式,会让 AI 胡说八道、说脏话、讨论非法话题、限制级话题、侵犯隐私、规避版权法等,从而突破限制讨论多种话题。 对于防御措施,将所有复杂的 AI 系统简单抽象为提示词输入、AI 大模型、输出结果三部分,相应的防御措施也可分为这三个部分。
2025-01-02
如何搭建 chatbox 敏感词库
很抱歉,目前知识库中没有关于如何搭建 chatbox 敏感词库的相关内容。但一般来说,搭建 chatbox 敏感词库可以考虑以下步骤: 1. 明确敏感词的范畴和类型,例如涉及政治、色情、暴力、辱骂等方面的词汇。 2. 收集相关的敏感词汇,可以通过参考行业标准、法律法规、用户反馈以及其他类似平台的经验。 3. 对收集到的敏感词进行分类和整理,以便于管理和更新。 4. 利用合适的技术和工具,将敏感词库集成到 chatbox 的系统中,实现实时检测和处理。 5. 定期更新和维护敏感词库,以适应不断变化的语言环境和用户需求。 以上是一个大致的搭建思路,具体的实施还需要根据您的实际情况和技术条件进行调整和优化。
2024-12-03
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
企业级别ai模型使用敏感词场景设计
很抱歉,目前知识库中没有关于企业级别 AI 模型使用敏感词场景设计的相关内容。但一般来说,在进行企业级别 AI 模型使用敏感词场景设计时,需要考虑以下几个方面: 1. 明确敏感词的定义和范围:根据企业的业务特点、法律法规要求以及道德规范,确定哪些词汇被视为敏感词。 2. 数据采集和预处理:在收集数据用于训练模型时,对包含敏感词的数据进行特殊处理或标记。 3. 模型训练中的考虑:调整模型的参数和算法,以降低对敏感词的过度依赖或错误理解。 4. 实时监测和更新:随着业务和社会环境的变化,及时更新敏感词列表,并对模型进行相应的调整和优化。 5. 人工审核与干预:对于模型输出中涉及敏感词的内容,设置人工审核环节,确保准确性和合规性。 希望以上思路能对您有所帮助,如果您需要更详细准确的设计方案,建议咨询专业的 AI 技术团队或相关专家。
2024-09-10