Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业级别ai模型使用敏感词场景设计

Answer

很抱歉,目前知识库中没有关于企业级别 AI 模型使用敏感词场景设计的相关内容。但一般来说,在进行企业级别 AI 模型使用敏感词场景设计时,需要考虑以下几个方面:

  1. 明确敏感词的定义和范围:根据企业的业务特点、法律法规要求以及道德规范,确定哪些词汇被视为敏感词。
  2. 数据采集和预处理:在收集数据用于训练模型时,对包含敏感词的数据进行特殊处理或标记。
  3. 模型训练中的考虑:调整模型的参数和算法,以降低对敏感词的过度依赖或错误理解。
  4. 实时监测和更新:随着业务和社会环境的变化,及时更新敏感词列表,并对模型进行相应的调整和优化。
  5. 人工审核与干预:对于模型输出中涉及敏感词的内容,设置人工审核环节,确保准确性和合规性。

希望以上思路能对您有所帮助,如果您需要更详细准确的设计方案,建议咨询专业的 AI 技术团队或相关专家。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
7天AI入门挑战
以下是为您提供的 7 天 AI 入门挑战的相关内容: 第一天(2024.5.22):初步探索。May 在开始想要了解 AI 的初期会走必经弯路,在 B 站看了一些介绍 ChatGPT 原理的分享,消费性观看可以,但系统性学习需要更高质量的内容,而非知识碎片。 第二天(2024.5.23):加入 AI 社区 waytoAGI。May 发现这个开源知识库,不再到处在 B 站找零碎东西。评价其为宝藏社区,感慨 AI 时代知识免费开源,考验的是如何在信息海洋中有体系地获取。第一步是看新手指引和入门的学习路径与课程。 第五天(2024.5.26):使用 kimi。May 开始研究 kimi 并使用,抱着每天向 kimi 问 100 个问题的心态,调整思考模式,养成有问题问 AI 的习惯。可参考。 第六天(2024.5.31):学习吴恩达生成式人工智能课程。应朋友强烈推荐,May 插队先看吴恩达的课程。可在 B 站搜索对应关键词获取课程资源,学习笔记可参考,抽空陆续 3 天学完。 第七天(2024.6.1):探索用 AI 解决一个真实问题。May 有一个明确的议题,比如团队要写一份行业研究报告,尝试看 AI 如何帮忙。 此外,元子从菜鸟到达人的进阶之路: Day 1:懵懵懂懂“你好,帮我写个报告” Day 7:学会表达“帮我写一份周报,重点说明项目进度” Day 14:熟练掌握“我需要一份项目总结,包含数据分析和改进建议” Day 30:把常规 AI 工具都试过一遍,并且选定自己要持续玩的方向 AI Agent Day 60:组队参加 AI Agent 比赛并有幸得奖 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 工作中的 AI 小帮手: 1. 需要快速生成报告?AI 来帮忙。 2. 需要快速整理数据?AI 来处理。 3. 需要快速翻译文件?AI 来翻译。 4. 需要快速优化文案?AI 来优化。
2025-03-03
现在有哪些AI绘画平台
以下是一些常见的 AI 绘画平台: 1. MewXAI:这是一款强大且新手友好、操作简单的 AI 绘画创作平台。其功能包括 MX 绘画、MX Cute、MJ 绘画、边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等。访问地址:https://www.mewxai.cn/ 2. StableStudio:Stability AI 开源的 AI 图像生成平台。 3. Roop:一键实现 AI 换脸,仅需一张换脸图像,无需数据集,无需训练,自带敏感图像检测功能。 4. pixian.ai:能够利用 AI 一键移除各种图像背景,并支持在线调整图片分辨率、背景颜色等。 5. Inpaint Anything:一个 AI 图像编辑工具,支持一键擦除、替换图像中的指定物品,通过提示词来自动更换背景图。 6. Segment Anything:一个图像分割模型,可自动分割图片或视频中的所有物品,一键完成自动分割,并支持零样本转移到其他分割任务。 7. Docker:支持一键从图片中解析出 Prompt 描述,并能够基于描述进行扩展,以便二次图片生成。 8. Plask.ai:一个 AI 工具,可以通过 3D 建模,直接生成模特效果图。 9. Recraft AI:是 AI 平面设计工具,用户可以使用其生成和编辑插画,海报,产品周边等,提供多种样式的可选风格,对所有用户每日都有免费的试用点数,并允许对生成的图像进行商业使用。访问地址:https://www.recraft.ai/ 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-03
现在有哪些ai平台?
以下是一些常见的 AI 平台: 图虫网:AI 摄影作品销售平台,利用图像识别、数据分析技术,为摄影爱好者提供作品销售渠道。 网易云音乐音乐人平台:AI 音乐作品发布平台,运用音频处理、数据分析技术,为音乐创作者提供作品发布等服务。 好好住 APP:AI 家居用品推荐平台,通过数据分析、自然语言处理技术,根据用户需求推荐家居用品。 东方财富网投资分析工具:AI 金融投资分析平台,借助数据分析、机器学习技术,分析金融市场并提供投资建议。 此外,在 ProductHunt 2023 年度最佳产品榜单中的 AI 产品有: Dora AI:用一次 prompt 生成网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Bard(免费):谷歌推出的官方 ChatGPT 竞争者,由谷歌的对话应用语言模型(LaMDA)提供支持。 Chat.DID(免费):有史以来首个允许人们以人类方式与 AI 进行视频聊天的 APP。 Pika(免费):AI 视频平台,能将创意转化为动态视频。 对于希望自行部署 AIGC 服务的用户,以下云服务平台可供选择: AWS(亚马逊云服务):提供多种 AI 服务,资源丰富、灵活性强,但费用相对较高,适合需求复杂、要求高可用的企业用户。 Google Cloud Platform:推出 Vertex AI 和多款预训练模型供使用,支持多种编程语言和框架,具有领先的计算机视觉和语音识别能力。 Microsoft Azure:Azure 机器学习服务涵盖多种 AI 工作负载,与微软其他产品融合度高,提供硬件加速等优化方案。 Huawei Cloud:提供 ModelArts 等 AI 开发和推理平台,融合 Ascend AI 处理器实现硬件加速,针对本地化部署和行业应用进行了优化。 阿里云:提供 PAI 和机器学习平台等 AI 产品,支持主流深度学习框架部署,与阿里云其他产品生态集成度高。部署 AIGC 服务通常需要大量算力和存储资源,利用云平台是便捷的选择。建议先评估实际业务场景和需求,再对比不同供应商的产品特性和价格,以选择最合适的部署方案。
2025-03-03
用AI生成角色原画的现状
目前,用 AI 生成角色原画既有优势也存在一些问题。 优势方面: Niji·journey 5 作为表现优异的在线二次元角色设计 AI,能在各种类型的二次元设计中发挥重要作用。 对于游戏中的角色设计,AI 设计可以提供参考和辅助。 问题方面: Niji·journey 5 存在对流行二次元风格的偏好、风格相对固定以及版权风险等局限性。 AI 设计生成的角色往往需要进一步修饰和调整以符合游戏整体风格和要求,不能完全掌握角色设计的细节和规律。 AI 绘画生成的设计可能存在版权问题。 未来展望: Niji 有望通过改进算法和扩大数据样本来源,提升角色设计的创新性和独特性,满足不同用户和项目的需求。 随着技术进步,Midjourney 等 AI 不断升级,使用 AI 辅助游戏美术设计师工作将成为趋势。但美术设计师需不断学习新技能和知识,拓展多领域知识,以应对未来变化和挑战。游戏美术中各职业分类的界限可能会越来越模糊。
2025-03-03
我应该如何自学ai
以下是关于自学 AI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生自学 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 7. 使用 AI 来做事: 利用人工智能帮助教育和自学学习,可以要求人工智能解释概念并获得结果。但因为人工智能可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。
2025-03-03
让AI帮我写一篇论文的文献综述,怎么命令
利用 AI 写一篇论文的文献综述可以参考以下步骤: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据,使用 AI 数据分析工具处理和解释。 8. 撰写和编辑:依靠 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:通过 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用时应保持批判性思维,确保研究质量和学术诚信。
2025-03-03
应用场景
以下是一些常见的 AI 应用场景: 1. 算法学习方面: KNN 近邻算法: 分类问题:如文本分类、图像识别、手写数字识别、医学诊断等。 回归问题:如房价预测、股票价格预测等。 异常检测:常用于识别异常值或离群点。 推荐系统:找到与用户兴趣相似的其他用户或物品进行推荐。 图像分割:识别图像中的区域并进行分割。 聚类分析:适用于数据集中簇非明显球形或高斯分布的聚类任务。 Adaptive Boosting: 程序化广告领域,辅助在 ocpx 领域单一 KPI 场景下进行“展示”或“不展示”的逻辑门判断。 证明观点,如判断 40 岁以上、收入>50k 的人群更倾向于购买商品的观点是否成立。 解决回归问题,如预测连续值。 2. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 3. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低风险。 信用评估:评估借款人信用风险,辅助贷款决策。 投资分析:分析市场数据,辅助投资决策。 客户服务:提供 24/7 服务,回答常见问题。 4. 零售和电子商务: 产品推荐:分析客户数据进行推荐。 搜索和个性化:改善搜索结果和提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 5. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 6. 交通运输:(此处未给出具体应用场景的详细描述)
2025-03-03
知识库的商业化应用场景有哪些
知识库的商业化应用场景主要包括以下几个方面: 1. 生物医药领域: 医药企业研发立项:回答关于作用机制、目标治疗疾病的竞争格局、主流技术路径、同技术路径其他公司产品在临床试验阶段的安全性风险和有效性等问题。 科研机构临床转化评估:回答关于科学家研究方向的临床转化潜力等问题。 投资机构评估标的公司:回答关于国外对标技术的发展情况、融资情况、临床转化的可靠性等问题。 2. 其他工作场景: 可以替代大部分传统医药数据库的商业化场景。 在一般的工作场景中,通过提示词设定角色和技能,结合知识库,让大语言模型能够按照需求做出准确回复。例如设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,能够回答相关问题。 此外,在知识库的检索原理方面: 1. 文本预处理:包括去除无关字符、标准化文本、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本转换为向量,通常通过使用预训练的嵌入模型完成。 3. 特征提取:对于整个问题句子,应用进一步的特征提取技术,如句子级别的嵌入,或使用深度学习模型直接提取整个句子的表示。 4. 向量优化:在某些情况下,问题的向量表示可能会根据具体任务进行优化。 5. 知识库检索阶段:在大模型的检索中,依靠问题在空间中的向量位置,寻找距离这个向量最近的其他词句完成检索,知识库被转化成巨大的向量库。
2025-02-28
AI 在金融领域的应用与场景
AI 在金融领域有以下应用与场景: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 的服务,回答常见问题。 金融服务业接纳生成式 AI 可能带来重大变革。与传统 AI/ML 侧重于基于现有数据进行预测或分类不同,生成式 AI 能创造全新内容,结合对大量非结构化数据的训练和无限计算能力,有望成为金融服务市场数十年来最大的变革。 在金融投资领域,Coze bot 可发挥重要作用。金融分析师和投资者能通过它自动接收最新市场动态、股市新闻和财务报告,从多个金融资讯平台抓取数据并生成分析报告,推送到常用交流平台,实现实时跟踪市场动向、捕捉投资机会、自动生成财务报告和方便团队协作等效果。
2025-02-27
有什么AI结合办 公场景的课程
以下是一些 AI 结合办公场景的课程: 【已结束】AIPO:校园 AI 创投活动 10 月 16 日 20:00,视频课程,讲师 EM7 南柒,课程标题为“AI 视频创作指南 商业片制作”,相关资料包括老师课件: 10 月 17 日 20:00,模型训练课程,讲师忠忠,课程标题为“0 基础模型训练”,相关资料:厚德云,课程回放: 10 月 18 日 20:00,comfyUI + 建站课程,讲师海辛/阿文,课程标题为“ComfyUI + Cursor 搭建应用”,相关资料:comfyUI、Cursor,课程回放: 10 月 20 日 14:00 18:00,校园 AIPO 线下路演 10 月 21 日 20:00,颁奖 Build on Trae AI 编程挑战 2 月 18 日 20:00 开始,分享材料(”,分享人 Super 黄 Eric,无作业要求 2 月 19 日 20:00 开始,分享材料(视频回放),内容为“AI 编程训练营 环境准备”,分享人 super 黄 2 月 20 日 20:00 开始,分享材料(视频回放) 2 月 21 日 20:00 开始,分享材料(视频回放) 2 月 22 日 20:00 开始,分享材料(视频回放) DAY1 必须了解的企业级 AI 应用开发知识点,本次共学课程会带着大家以“逛”+“体验”的模式,去云游一下阿里云百炼平台的市场,里面目前包含了市面上大量的可以直接使用的 API 能力、场景化的解决方案能力。在本次共学课程中仅需通过简单的界面操作,在几分钟内开发出一款大模型应用、在几小时内训练出一个专属模型,将更多精力专注于应用创新。
2025-02-27
我想时刻关注Deepseek目前在电商行业应用落地的场景的信息及对应的应用APP、小程序等,可以通过什么渠道第一时间获取
目前关于 Deepseek 在电商行业应用落地的场景信息以及对应的应用 APP、小程序等,您可以通过以下渠道第一时间获取: 1. 关注 Deepseek 官方网站的动态发布和通知。 2. 订阅 Deepseek 官方的社交媒体账号,如微信公众号、微博等,获取最新消息。 3. 加入相关的电商行业论坛或社区,与其他从业者交流,获取相关信息。 4. 关注电商行业的权威媒体和资讯平台,可能会有相关报道。
2025-02-26
Deepseek目前已在电商行业应用落地的场景有哪些?
DeepSeek 在电商行业已应用落地的场景包括: 电商商品策划:如“电商商品策划 DeepSeek 大师版|一键领取同款多维表格模板”。 商品链接分析:如“商品链接分析工具”。 电商产品上架规划:如“电商产品上架规划”。 您可以通过以下链接获取更详细的信息:
2025-02-26
要熟练使用ai的话,英语得是哪个级别的?
要熟练使用 AI ,对英语水平的要求会因具体的应用场景和个人需求而有所不同。 一般来说,如果是为了进行基本的交流和获取常见的信息,具备大学英语四级左右的水平可能就能够初步应对。但如果想要更深入地理解和运用 AI 中的复杂技术文档、进行专业领域的交流,或者参与国际前沿的研究和讨论,可能需要达到大学英语六级甚至更高的水平,如雅思 6.5 分及以上。 例如,在一些需要准确理解和运用复杂句子结构、多样化词汇,并能进行深入的观点阐述和交流的场景中,较高的英语水平会更有优势。 同时,学英语的目的和需求不同,所需的英语水平也不同。比如,为了跨语言交流、应试、工作、获取信息或理解文化等,学习的必要性和路径都会有所差异。 在使用 AI 辅助英语学习时,要注意一些事项:AI 只是辅助工具,不能替代人的思考;给 AI 的信息要尽可能准确、清晰;要注重思维启发和知识学习而非单纯获取答案;掌握一些向 AI 提问的技巧;养成做一道题就新开一个对话的好习惯;对于英语、语文之外的学科的学习要慎用 AI 。 此外,英语学习的重点在于“有效输入”,然后是理解后的输出。可以尝试不开字幕听感兴趣的优质播客,每天熟读并背诵一篇 100 字短文等方法。
2025-01-07
如何限制AI Chat回答非法话题,敏感词过滤
以下是关于限制 AI Chat 回答非法话题和进行敏感词过滤的相关内容: 首先,以 ChatGPT 为例,其系统提示词会详细描述身份、角色、时间、记忆功能、DALLE 绘图功能、限制、调用方式、上网和浏览网页功能以及 function calling 和 python 代码等功能。 存在提示词越狱的情况,常见方式包括角色扮演、情境模拟、任务伪装、模式重构等,由此诞生了如 DAN 模式、越狱提示词、邪恶机器人以及 ChatGPT 的开发者模式等经典提示词。例如 DAN 模式,会让 AI 胡说八道、说脏话、讨论非法话题、限制级话题、侵犯隐私、规避版权法等,从而突破限制讨论多种话题。 对于防御措施,将所有复杂的 AI 系统简单抽象为提示词输入、AI 大模型、输出结果三部分,相应的防御措施也可分为这三个部分。
2025-01-02
如何搭建 chatbox 敏感词库
很抱歉,目前知识库中没有关于如何搭建 chatbox 敏感词库的相关内容。但一般来说,搭建 chatbox 敏感词库可以考虑以下步骤: 1. 明确敏感词的范畴和类型,例如涉及政治、色情、暴力、辱骂等方面的词汇。 2. 收集相关的敏感词汇,可以通过参考行业标准、法律法规、用户反馈以及其他类似平台的经验。 3. 对收集到的敏感词进行分类和整理,以便于管理和更新。 4. 利用合适的技术和工具,将敏感词库集成到 chatbox 的系统中,实现实时检测和处理。 5. 定期更新和维护敏感词库,以适应不断变化的语言环境和用户需求。 以上是一个大致的搭建思路,具体的实施还需要根据您的实际情况和技术条件进行调整和优化。
2024-12-03
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
ai落地场景:输入敏感词管控,脱敏怎么返回处理
很抱歉,目前知识库中没有关于输入敏感词管控及脱敏返回处理的相关内容。但一般来说,对于输入敏感词的管控和脱敏处理,常见的方法包括: 1. 建立敏感词库:事先整理出常见的敏感词列表。 2. 文本检测:在输入时对文本进行实时检测,判断是否包含敏感词。 3. 脱敏处理方式:可以采用替换、隐藏部分字符、加密等方法对敏感词进行处理。 4. 设置规则和策略:例如根据不同的场景和用户级别,确定不同的处理方式。 由于缺乏具体的详细信息和场景,以上只是一些常见的思路和方法,您可以根据实际情况进一步深入研究和设计具体的解决方案。
2024-09-10
输入询问ai模型敏感词管控
以下是关于 AI 模型敏感词管控的相关信息: 在给予 GPT 足够的时间进行“思考”的最佳实践中,通过测试数据发现,由于输入内容超过一定 token 会导致模型遗忘。因此,在输入大量文本或大量对话后,让模型进行自我检查的提示词习惯,有助于收获更准确的答案。 在应对提示词攻击的输入侧防护方面,可采用基于模型进行分类过滤的方法。这是“基于提示词过滤”的进阶版,能使用像 BERT 这样的小型文本分类模型或像 ChatGPT 这样的大型语言模型,自动分析和分类输入内容。其好处是无需提前知晓大量信息,就能灵活应对复杂场景和不同需求。通过学习和训练大量已知的安全威胁样本,建立分类模型来检测和过滤输入中的有害内容,这是很多大型语言模型服务如 OpenAI 的 ChatGPT、谷歌的 Bard、微软的 NewBing 等采用的主流防御策略,它们会检测用户输入内容,与核心大型语言模型协同工作,防止有害和敏感信息输入,确保输出内容合规。
2024-09-10
模型敏感词管控
在模型敏感词管控方面,对于 RAG 提示工程,我们对 Example 模块进行了重要调整。原先像“清朝末年有哪些政治事件?”这样的示例内容可能会无意引导模型触及政治敏感话题,违背初衷。为此,重新设计了示例内容,既能为模型提供清晰工作指导,又避免引发敏感议题讨论,同时进一步修改了示例流程,确保模型更理解自身任务。以下是进一步修正的提示词。接下来继续运行并查看结果。从表现看,成功控制住 GPT 模型讨论敏感话题的问题,但可能存在漏洞及提示词被攻击、诱骗的情况,这些留待后续解决。目前面对常规请求问题,GPT 模型应不会“东扯西扯”。
2024-09-10