直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

企业级别ai模型使用敏感词场景设计

回答

很抱歉,目前知识库中没有关于企业级别 AI 模型使用敏感词场景设计的相关内容。但一般来说,在进行企业级别 AI 模型使用敏感词场景设计时,需要考虑以下几个方面:

  1. 明确敏感词的定义和范围:根据企业的业务特点、法律法规要求以及道德规范,确定哪些词汇被视为敏感词。
  2. 数据采集和预处理:在收集数据用于训练模型时,对包含敏感词的数据进行特殊处理或标记。
  3. 模型训练中的考虑:调整模型的参数和算法,以降低对敏感词的过度依赖或错误理解。
  4. 实时监测和更新:随着业务和社会环境的变化,及时更新敏感词列表,并对模型进行相应的调整和优化。
  5. 人工审核与干预:对于模型输出中涉及敏感词的内容,设置人工审核环节,确保准确性和合规性。

希望以上思路能对您有所帮助,如果您需要更详细准确的设计方案,建议咨询专业的 AI 技术团队或相关专家。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
ai怎样精准搜索
AI 精准搜索可以通过以下几个关键步骤来实现: 1. 意图识别:对用户提问进行分类,如导航类、信息查询类、交易类、本地信息类等,还包括多级子分类。通过分类匹配更准的信息源和更好的回复提示词,很大程度提升检索召回率。目前主流的实现方案主要是通过提示词请求大模型完成,但准确度不够高,大模型的 Function Calling 能力也可理解为一种意图识别。 2. 问题改写(Query Rewrite):在完成意图识别并确认需要联网检索后,对用户的 query 进行改写,目的是得到更高的检索召回率。主要包括三个维度的改写,即让提问有更精准/更专业的表达、补全上下文做指代消解、名词提取。改写可以通过设置提示词请求大模型完成。 3. 多信息源聚合(Multi Source):提升 AI 搜索准确度的另一个关键措施是做多信息源整合。结合意图识别和问题改写,假设用户搜索特定问题,可根据意图判断是否联网及搜索类型,提取概念名词,除常见检索外,还可检索其他信息源获取更多内容。多信息源的整合可能涉及海量数据处理和自建信息源索引等技术,传统搜索厂商和依靠 UGC 建立数据飞轮的超级 App 在这方面有优势。 4. 搜索结果重排(Reranking):AI 搜索做多信息源整合时,需要对检索结果重排。重排目的主要是过滤不相关参考信息和对相关性进行排序,便于截取权重最高的 top_k 条记录作为引用参考。重排方案有使用 zilliz 向量数据库+llamaindex 框架做相似度匹配和使用 FlashRank 开源框架,但前者效率低,后者准确度不够高。 5. 搜索内容读取(Read Content)
2024-12-22
可灵ai官网教学
以下是关于可灵 AI 的相关信息: 可灵是一款由快手团队开发的 AI 应用,主要用于生成高质量的图像和视频。 其特点包括: 1. 生成的图像质量非常高。 2. 最初采用内测邀请制,现在已向所有用户开放使用。 费用方面: 1. 价格相对较高,重度用户的最高档年费可能达到几千元人民币,平均每月使用成本在 400 到 600 元人民币之间。 2. 对于临时使用或轻度使用的用户,有每日免费点数和 60 多元单月的最便宜包月选项。 您可以通过以下方式获取更多关于可灵 AI 的教学内容: 1. 可灵的官网帮助中心。 2. 相关的视频教程,如“【90 分钟视频教程】全网最详细的 Coze AI 应用教学”。
2024-12-21
可灵ai如何保持人物一致性
要保持可灵 AI 中人物的一致性,可以参考以下方法: 1. 人物设定: 明确主角、配角等人物的性格特点、外貌特征等,如主角是一位 40 岁的中年男探险家,性格特点是面对挑战从不轻言放弃,外貌特征是健壮、棕色头发、常穿探险服。 2. MJcref 控制人物一致性: 先根据人物设定,在 MJ 里筛选适合的人物形象,选中后右键复制图片链接。 在尾缀加入【cref 图片链接】控制人物一致性,【cw 数值】控制权重。 对于镜头较多的角色,建议炼个人物模型出来控制,不然 MJ 容易不稳定。 3. 控制多人物场景统一: 先控制一个角色再进行重绘。 选一张合适的图片后,点击 Vary进行局部重绘,并把尾缀机器人的 cref 链接改成主角的 cref 链接。 4. 通过 prompt 格式实现“角色一致性”: 公式:发型+年龄性别+衣物颜色+环境+其他(动作、镜头等)。 发型/衣物:构造尽可能多的角色非面部视觉元素,产生观众对角色的“一致性观感”。 年龄:约束角色年龄特征。 环境:约束能够产生相同观感的环境空间,尤其是光环境,增加观众对于形象认识的“一致性”认知。例如: 特写一个棕色卷发,身穿棕褐色上衣的小男孩,正对镜头,面部被烛光照亮,表情惊讶,环境昏暗明暗对比强烈。 特写一个棕色卷发,身穿棕褐色上衣的小男孩,侧对镜头,微微仰头走在一片暗绿色的森林中,面部被手中提着的油灯照亮,环境昏暗明暗对比强烈。 一个棕色卷发,身穿棕褐色上衣的小男孩侧对镜头,看着面前桌上的蜡烛,环境昏暗明暗对比强烈。 中景拍摄一个棕色卷发,身穿棕褐色上衣的小男孩,正对镜头,在一个梦幻感的暖色调房间里,全身贯注地拼装面前的积木玩具。
2024-12-21
你只知道AI相关的事情吗
我主要专注于 AI 相关的知识和问题。在 AI 领域,涵盖的内容非常广泛,包括但不限于以下方面: 基础理论:如人工智能、机器学习、深度学习的定义及其相互关系。 历史发展:AI 的发展历程和重要里程碑。 数学基础:统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(掌握条件概率、贝叶斯定理等知识)。 算法和模型:监督学习(了解线性回归、决策树、支持向量机等算法)、无监督学习(熟悉聚类、降维等算法)、强化学习(知晓其基本概念)。 评估和调优:性能评估(知道如何运用交叉验证、精确度、召回率等评估模型性能)、模型调优(学会使用网格搜索等技术优化模型参数)。 神经网络基础:网络结构(理解前馈网络、卷积神经网络、循环神经网络等)、激活函数(了解 ReLU、Sigmoid、Tanh 等常用激活函数)。 同时,AI 在各行各业有着广泛的应用场景,例如: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:等等。
2024-12-21
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
小白如何学习ai
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型及原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习是基于有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据自主发现规律,经典任务如聚类;强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法,神经网络可用于多种学习方式。 生成式 AI 可生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
我是一个法律工作者,需要经常回答客户的一些法律问题,哪个AI适合我这种场景的工作需求
对于您这种经常回答客户法律问题的法律工作者,以下几种场景中适合使用法律行业垂类的 AI 产品: 1. 法规研究与解读:使用 Prompt 指令词,如“根据最新修订的《数据安全法》,解析企业在处理个人信息时应遵循的主要原则,并给出具体操作建议”,AI 助手将依据最新条款解析原则并提出操作指南或合规建议。 2. 法律意见书撰写或非诉交易文件材料:例如“针对我方当事人涉及的版权纠纷案,输入【已有的证据材料】+【相关法律条文】,撰写一份初步法律意见书,论证我方主张的合理性和胜诉的可能性”,AI 将根据提供的材料撰写法律意见书。 3. 案例检索:如“请搜索近五年内关于商标侵权案件中‘混淆可能性’标准的具体判例,并提供相似度最高的三个案例的关键要点摘要”,AI 系统将检索并提炼关键判决理由和结果。 4. 类案检索:同样最好使用法律行业垂类的 AI 产品。 5. 法律文本阅读:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 在使用 Prompt 时,要注意结构提示,如“【需求或目的+根据具体法条或者根据某部法律+具体需要研究或则具体的研究细节内容】”。
2024-12-19
在办公场景下,如何使用AI,让我办公效率更高
在办公场景下,以下是一些使用 AI 提高办公效率的方式: 1. 产品经理方面:使用 GPT 解决性能差和历史数据存档的问题,可将最终的 SQL 执行时间大幅缩短,提升效率并降低复杂度,同时保存所有历史数据,实现报表秒开。 2. 运营方面:将 ChatGPT 视为日常工作的辅助工具,顺应技术发展趋势,借助其提升工作效率。 3. 营销方面:探索 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程;定制营销报告时,考虑汇报对象身份、销售数据、财务报告等多方面因素。 4. 办公方面:用 ChatGPT 生成 Markdown 语法的内容,再借助 MindShow 工具转换为精美的 PPT。 此外,还有一些 AI 应用也能助力办公,比如: 1. 豆果美食 APP:能根据用户口味和现有食材生成个性化菜谱。 2. 沪江开心词场:辅助用户学习语言,提供个性化学习方案。 3. 爱奇艺智能推荐:根据用户喜好推荐电影,帮助发现优质影片。 4. WPS Office:利用智能排版、语法检查等功能,提高办公效率,实现自动化办公流程。
2024-12-18
新闻资讯场景可以和现在的ai能力结合出哪些新的应用场景
新闻资讯场景与当前 AI 能力结合可以产生以下新的应用场景: 1. 文本生成和内容创作:生成连贯、有逻辑的新闻报道、评论等文本内容。 2. 聊天机器人和虚拟助手:为用户提供新闻相关的咨询和服务。 3. 编程和代码辅助:辅助新闻资讯平台的开发和优化。 4. 翻译和跨语言通信:促进不同语言背景的用户获取新闻资讯。 5. 情感分析和意见挖掘:分析新闻评论中的用户情感和观点,为新闻报道提供参考。 6. 教育和学习辅助:创建与新闻相关的学习材料,辅助新闻知识的学习。 7. 图像和视频生成:根据新闻内容生成相应的图像和视频。 8. 游戏开发和互动体验:将新闻元素融入游戏,增强用户的沉浸式体验。 9. 医疗和健康咨询:提供与健康新闻相关的初步建议和信息查询服务。 10. 法律和合规咨询:帮助解读与新闻相关的法律文件和合规问题。 在专业创作者方面,AI 生成能够为新闻类作品赋予独特风格和想象力,为创作者提供灵感,降低后期制作的门槛和成本。目前该应用主要集中在新闻相关的音乐 MV、短篇电影、动漫等方向。 对于自媒体、非专业创作者,AI 可以帮助解决视频剪辑痛点,如为科技、财经、资讯类重脚本内容的视频生成分镜、视频,降低视频素材制作门槛,还能将文章高效转成视频内容,以及解决同一素材在不同平台分发的成本问题。 对于企业客户,AI 视频生成可以为没有足够视频制作资金的小企业、非盈利机构大幅缩减新闻相关视频的制作成本。
2024-12-17
AI技术在餐饮行业的应用场景有哪些
AI 技术在餐饮行业的应用场景主要包括以下方面: 1. 营销管理:时来智能通过自研的 AI Agent 以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。基于垂直场景数据训练的 AI 营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果,帮助门店提升 50%100%的营销转化效果以及相应提升平均 1520%的营业额。 2. 菜谱调整:下厨房的口味调整功能可根据用户对菜谱的评价,利用 AI 分析后给出口味调整建议,如增加甜度、减少辣味等。
2024-12-17
0基础如何系统学习AI,目标:针对特定场景开发出AI产品
对于 0 基础想要系统学习 AI 并针对特定场景开发出 AI 产品的您,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于 AI 产品经理,个人做了以下划分,仅供娱乐和参考: 1. 入门级: 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 在 AI 游戏场景方面,为您提供以下案例: 1. 从游戏截图升级到 KV 品质,AI 居然可以这样用! 作者:yanceyzhang 简介:AI 生成图像具有较大的随机性,如果想用在特定项目上的话,用游戏内资源拼合作为图生图的底图可以很好的帮助 ai 发挥,复现游戏原有的画风、世界观和人物设定,下面将实际操作中的一些思路和小技巧分享出来。 查看链接: 入库时间:2023/11/21 2. 《LORA 模型训练超入门级教程》人人都可以当炼金术士 作者:包子 SAMA丶 简介:初步接触训练模型,主要是以美术视角出发来进行讲解,目的就是可以让不理解训练概念和代码指令的小伙伴更容易上手 Lora 模型训练。 查看链接: 入库时间:2023/11/21 3. 人人可以做原画,如何运用 Midjourney+Stable Diffusion 进行角色原画设计 作者:Harayuan 简介:本文旨在详细探讨运用 MJ+SD 进行角色设计的方法、技巧,以及它的优势、不足之处和未来发展方向。 查看链接: 入库时间:2023/11/21
2024-12-16
在大学里,AI的应用场景
在大学里,AI 有以下应用场景: 教育方面: 可以大规模部署个性化的学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。 有 AI 驱动的语言老师能实时交流并给予发音或措辞的反馈,如 Speak、Quazel 和 Lingostar 等。 出现了帮助学生解决数学问题的应用,如 Photomath 和 Mathly,以及通过模拟与杰出人物聊天来教授历史的应用,如 PeopleAI 和 Historical Figures。 学生在作业中利用 AI 助手,如 Grammarly、Orchard 和 Lex 等提升写作水平,还有协助创建演示文稿的工具,如 Tome 和 Beautiful.ai。 老师在 AIGC 的帮助下备课和授课,如北京市新英才学校的实践。 其他方面: 自动驾驶:用于开发自动驾驶汽车,提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 农业:分析农田数据,提高农作物的产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源的使用,提高能源效率。 需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2024-12-15
如何搭建 chatbox 敏感词库
很抱歉,目前知识库中没有关于如何搭建 chatbox 敏感词库的相关内容。但一般来说,搭建 chatbox 敏感词库可以考虑以下步骤: 1. 明确敏感词的范畴和类型,例如涉及政治、色情、暴力、辱骂等方面的词汇。 2. 收集相关的敏感词汇,可以通过参考行业标准、法律法规、用户反馈以及其他类似平台的经验。 3. 对收集到的敏感词进行分类和整理,以便于管理和更新。 4. 利用合适的技术和工具,将敏感词库集成到 chatbox 的系统中,实现实时检测和处理。 5. 定期更新和维护敏感词库,以适应不断变化的语言环境和用户需求。 以上是一个大致的搭建思路,具体的实施还需要根据您的实际情况和技术条件进行调整和优化。
2024-12-03
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
ai落地场景:输入敏感词管控,脱敏怎么返回处理
很抱歉,目前知识库中没有关于输入敏感词管控及脱敏返回处理的相关内容。但一般来说,对于输入敏感词的管控和脱敏处理,常见的方法包括: 1. 建立敏感词库:事先整理出常见的敏感词列表。 2. 文本检测:在输入时对文本进行实时检测,判断是否包含敏感词。 3. 脱敏处理方式:可以采用替换、隐藏部分字符、加密等方法对敏感词进行处理。 4. 设置规则和策略:例如根据不同的场景和用户级别,确定不同的处理方式。 由于缺乏具体的详细信息和场景,以上只是一些常见的思路和方法,您可以根据实际情况进一步深入研究和设计具体的解决方案。
2024-09-10
输入询问ai模型敏感词管控
以下是关于 AI 模型敏感词管控的相关信息: 在给予 GPT 足够的时间进行“思考”的最佳实践中,通过测试数据发现,由于输入内容超过一定 token 会导致模型遗忘。因此,在输入大量文本或大量对话后,让模型进行自我检查的提示词习惯,有助于收获更准确的答案。 在应对提示词攻击的输入侧防护方面,可采用基于模型进行分类过滤的方法。这是“基于提示词过滤”的进阶版,能使用像 BERT 这样的小型文本分类模型或像 ChatGPT 这样的大型语言模型,自动分析和分类输入内容。其好处是无需提前知晓大量信息,就能灵活应对复杂场景和不同需求。通过学习和训练大量已知的安全威胁样本,建立分类模型来检测和过滤输入中的有害内容,这是很多大型语言模型服务如 OpenAI 的 ChatGPT、谷歌的 Bard、微软的 NewBing 等采用的主流防御策略,它们会检测用户输入内容,与核心大型语言模型协同工作,防止有害和敏感信息输入,确保输出内容合规。
2024-09-10
模型敏感词管控
在模型敏感词管控方面,对于 RAG 提示工程,我们对 Example 模块进行了重要调整。原先像“清朝末年有哪些政治事件?”这样的示例内容可能会无意引导模型触及政治敏感话题,违背初衷。为此,重新设计了示例内容,既能为模型提供清晰工作指导,又避免引发敏感议题讨论,同时进一步修改了示例流程,确保模型更理解自身任务。以下是进一步修正的提示词。接下来继续运行并查看结果。从表现看,成功控制住 GPT 模型讨论敏感话题的问题,但可能存在漏洞及提示词被攻击、诱骗的情况,这些留待后续解决。目前面对常规请求问题,GPT 模型应不会“东扯西扯”。
2024-09-10
我想保持对于AI信息的敏感度,你怎么建议
以下是一些保持对 AI 信息敏感度的建议: 1. 关注相关政策和法规的发布与更新,例如了解英国的 AI 监管政策以及拜登签署的 AI 行政命令等,掌握其对 AI 发展的影响和规范。 2. 重视 AI 风险评估,包括考虑未充分利用 AI 能力可能带来的机会成本,以及在不同场景如安全关键操作、重工业、个人医疗保健中的应用风险。 3. 关注 AI 系统的安全性、稳健性和隐私保护,例如研究和采用加密工具等隐私保护技术,评估机构收集和使用商业信息的方式,制定隐私保护技术的有效性评估指南。 4. 注重 AI 治理中的透明度和可解释性,了解相关原则和定义,确保监管者能获取足够信息以落实其他原则。 5. 关注 AI 在公平和民权方面的影响,防止其在司法、医疗和住房等领域导致或加深歧视、偏见等问题,遵循相关指导和采取行动。 6. 参与相关的交流和讨论活动,与监管机构、AI 生命周期参与者等进行沟通,了解最新动态和发展方向。
2024-09-04