Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

支持向量机

Answer

支持向量机(SVM)是一种重要的机器学习算法。

在深度学习的发展历程中,尽管取得了一些进展,但在特定时期,如人工智能寒冬期间,用于神经网络研究的资金很少,人工智能领域发展受到一定限制。在此期间,Cortes 和 Vapnik 于 1995 年开发的支持向量机表现突出,使得一些重要进展如 Hochreiter 和 Schmidhuber 在 1997 年为递归神经网络开发的长短期记忆(LSTM)被忽视。后来随着计算机性能提升,神经网络逐渐与支持向量机相竞争,且在相同数据量下能获得更好结果,同时神经网络在有更多训练数据时会持续改进。

在算法学习中,支持向量机属于强学习器。强学习器通常具有高准确率,能很好地泛化到新数据上,例如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。而弱学习器准确率仅略高于随机猜测,通常是简单的模型,如决策树桩。

Content generated by AI large model, please carefully verify (powered by aily)

References

深度学习(2)历史和训练

尽管取得了这些成功,但用于神经网络研究的资金仍然很少。[在人工智能寒冬](https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/#ai-winter)期间,人工智能一词近乎成为伪科学的代名词,该领域仍需一段时间才能恢复。这一时期取得了一些重要的进展,例如,Hochreiter和Schmidhuber在1997年为递归神经网络开发的长短期记忆(LSTM),但是这些进展在Cortes和Vapnik于1995年开发的支持向量机(VCM)面前相形见绌,因此大多数被人们所忽视。下一个重大转变的契机出现在静待计算机变得更快,和接下来引入的图形处理单元(GPU)。仅等待更快的计算机和GPU就可以在10年内将计算速度提高1000倍。在这期间,神经网络逐渐开始与支持向量机相竞争。与支持向量机相比,神经网络可能会慢一些,但是在相同数量的数据下可以获得更好的结果。与简单算法不同,神经网络在有更多训练数据时会持续改进。此时的主要障碍是训练大型、深层的网络,这些网络因遭受梯度消失问题,无法学习早期层的特征,因为没有学习信号到达这些层。

[算法学习] Adaptive Boosting 分类/回归

AdaBoost(Adaptive Boosting),即自适应增强算法,是一种集成学习算法,主要用于分类问题,也可以用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器(Weak Learner)弱学习器是集成学习中的一个概念。在机器学习中,学习器通常被分类为强学习器(Strong Learner)和弱学习器。两者的基本区别有:强学习器:强学习器通常指的是具有高准确率的模型,能够很好地泛化到新的数据上。它们可能是复杂的模型,比如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。弱学习器:弱学习器的准确率仅略高于随机猜测。例如,在二分类问题中,如果随机猜测的准确率是50%,那么弱学习器的准确率可能只是略高于50%,比如51%。弱学习器通常是简单的模型,比如决策树桩(Decision Stumps),它们只考虑单个特征的阈值来做出预测。(比如月收入高于30k,就有可能购买一个空气净化器)

适用于 JavaScript 的 AI 堆栈入门

LLM需要一个稳定的长期记忆来保存状态并解决上下文窗口的问题,这由向量数据库来处理。目前,Pinecone是与生成式人工智能群体最成熟和最受欢迎的向量存储库。话虽如此,我们希望为所有用例和偏好提供支持,因此我们还在存储库中包含了对Supabase的[pg-vector](https://supabase.com/docs/guides/database/extensions/pgvector)的支持。将Pinecone与Langchain.js一起使用的示例代码。您还可以[在此处](https://github.com/a16z-infra/ai-getting-started/blob/fc74d00552c7bdfdd504f98b0c7d362f8e5933c0/src/app/api/qa-pg-vector/route.ts)找到有关使用Supabase pg-vector的[示例](https://github.com/a16z-infra/ai-getting-started/blob/fc74d00552c7bdfdd504f98b0c7d362f8e5933c0/src/app/api/qa-pinecone/route.ts).

Others are asking
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
向量检索在大语言模型中的应用主要是为了解决什么问题
向量检索在大语言模型中的应用主要是为了解决以下问题: 1. 由于大模型的输入窗口有限,通过文本分割器将文档分割成较小的对象,方便后续的检索和生成,在较短的文本中更容易找到相关信息。 2. 利用文本嵌入器将文本转换为高维向量,通过衡量文本之间的相似度实现检索功能。 3. 借助向量存储器存储和查询嵌入,通常使用索引技术如 Faiss 或 Annoy 加速嵌入的检索。 4. 检索器根据文本查询返回相关的文档对象,常见的实现如向量存储器检索器使用向量存储器的相似度搜索功能进行检索。
2024-12-05
ollama嵌入向量在模型后有什么用
嵌入向量在模型后的作用主要体现在以下方面: 1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。 2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。 3. 支持多语言和不同粒度的检索任务:例如像 bgem3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。 在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。
2024-11-12
数据如何向量化
数据向量化是为了实现高效的文档检索,将原始的文本数据转化为数值向量的过程。其目的是将文本数据映射到低维向量空间,使语义相似的文本距离较近,不相似的较远。但这一过程会导致一定程度的信息损失,因为文本的复杂性和多样性难以用有限向量完全表达,可能忽略细节和特征,影响文档检索准确性。 在语义搜索中,根据用户问题从文档集合中检索语义最相关的文档,主流方法是基于数据向量化结果,利用向量空间中的距离或相似度度量语义相似度,但存在局限性,如不能完全反映真实语义相似度,向量空间中的噪声和异常值会干扰结果,导致准确率无法 100%保证。 在计算机科学和数据分析中,向量常被用作表示数据点的方式,是一个数值列表或数组,每个数值代表数据点的一个特征。多维数据运算常以矩阵形式进行,矩阵乘法是基本操作。归一化是数据预处理的关键技术,用于调整数值数据范围,常用方法有最小最大缩放和 Z 得分标准化。 在向量数据库中,当用户输入查询时,如“激动人心的科幻冒险”,会转换成一个向量,例如,表示对不同元素的偏好程度。向量数据库存放的是词在不同维度上的相对位置,数据的存储和检索与传统 Excel 和关系数据库有很大不同。关于文字如何转换成向量,实际的向量结构会很复杂。
2024-10-12
以图片为主的PDF文件向量化的本地大模型推荐
以下是关于以图片为主的 PDF 文件向量化的本地大模型的相关信息: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 技术实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 PDF 翻译的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择相关翻译选项。 3. Calibre(电子书管理应用):,下载安装并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传多种格式文件,支持选择领域和导出格式。 6. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档,但有免费次数限制且进阶功能需付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-06
稀疏向量有什么用,跟稠密向量油什么区别
稀疏向量和稠密向量在多个领域都有重要的应用,它们的主要区别在于元素的分布和存储方式。 稀疏向量中,大部分元素的值为零或为空,只有少数元素具有非零值。其主要用途包括: 1. 在处理大规模数据时,能够节省存储空间和计算资源,例如在自然语言处理中处理高维的词向量。 2. 对于具有稀疏特征的数据,能够更有效地表示和处理,比如在推荐系统中用户的兴趣特征。 稠密向量则是大多数元素都具有非零值。其特点和适用场景包括: 1. 更适合表示数据特征分布较为均匀的情况。 2. 在一些需要精确计算和密集运算的场景中表现较好,例如图像识别中的像素特征向量。 总的来说,选择使用稀疏向量还是稠密向量取决于具体的应用场景和数据特点。
2024-09-07
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
支持识别图片内容物的ai软件
以下是一些支持识别图片内容物的 AI 软件: 1. PixelLLM Google 的新视觉语言模型: 能提供对图片内容的详细描述及每个词汇的具体位置。 可以识别图片中的物体,并精确指出其位置。 特别适用于图像和文字紧密结合的任务。 相关链接:https://jerryxu.net/PixelLLM/ 、https://arxiv.org/abs/2312.09237 2. EmbedAI 定制您自己的 ChatGPT: 支持使用各种数据源训练 ChatGPT,包括文件、网站、Notion 文档和 YouTube。 应用范围广泛,如智能客服、个性化学习助手等。 无代码平台,适合非编程背景用户。 相关链接:https://thesamur.ai 、https://x.com/xiaohuggg/status/1736336780876742873?s=20 此外,还有用于判断一张图片是否为 AI 生成的网站,如 ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中可能存在一些误判情况。
2024-12-14
支持识别图片内容物的ai软件
以下为一些支持识别图片内容物的 AI 软件: 1. PixelLLM Google 的新视觉语言模型: 能提供对图片内容的详细描述及每个词汇的具体位置。 可以识别图片中的物体,并精确指出其位置。 特别适用于图像和文字紧密结合的任务。 相关链接:https://jerryxu.net/PixelLLM/ 、https://arxiv.org/abs/2312.09237 2. EmbedAI 支持使用各种数据源训练 ChatGPT,包括文件、网站、Notion 文档和 YouTube。应用范围广泛,如智能客服、个性化学习助手等。无代码平台,适合非编程背景用户。 相关链接:https://thesamur.ai 、https://x.com/xiaohuggg/status/1736336780876742873?s=20 此外,还有用于鉴别图片是否为 AI 生成的网站,如 ILLUMINARTY(https://app.illuminarty.ai/),但在测试过程中可能存在一些误判情况。
2024-12-14
我需要一款可以支持我做头脑风暴的AI
以下为您推荐几款可支持头脑风暴的 AI 工具及相关建议: 1. 从企业使用 AI 的经验来看,在使用 AI 之前最好有自己的想法和方向,AI 在早期作为顾问更合适,作为头脑风暴的助手,后期的复盘,也能找到很多不一样的视角。但要留意回音壁问题。 2. 您可以参考 nimbus 提供的头脑风暴专家提示词,其能依照最佳实践来指导头脑风暴,需要让头脑风暴组织有序、高效,同时也要激发参与者的想象力与创造力,并善于总结归纳头脑风暴产出。 3. 在写作方面,AI 可以成为得力助手。比如用 AI 来头脑风暴,在开始写作之前获取选题建议或内容方向;用 AI 来查找资料,快速汇总主题相关信息;用 AI 来优化表达,检查语法、改善表达;用 AI 来拓展思路,在卡壳时开拓新的思考方向。 总之,AI 可以在头脑风暴中发挥一定的作用,但不能完全依赖,仍需注重自身的思考和创新。
2024-12-12